90

SG-OIF: A Stability-Guided Online Influence Framework for Reliable Vision Data

Main:8 Pages
7 Figures
Bibliography:3 Pages
11 Tables
Appendix:12 Pages
Abstract

Approximating training-point influence on test predictions is critical for deploying deep-learning vision models, essential for locating noisy data. Though the influence function was proposed for attributing how infinitesimal up-weighting or removal of individual training examples affects model outputs, its implementation is still challenging in deep-learning vision models: inverse-curvature computations are expensive, and training non-stationarity invalidates static approximations. Prior works use iterative solvers and low-rank surrogates to reduce cost, but offline computation lags behind training dynamics, and missing confidence calibration yields fragile rankings that misidentify critical examples. To address these challenges, we introduce a Stability-Guided Online Influence Framework (SG-OIF), the first framework that treats algorithmic stability as a real-time controller, which (i) maintains lightweight anchor IHVPs via stochastic Richardson and preconditioned Neumann; (ii) proposes modular curvature backends to modulate per-example influence scores using stability-guided residual thresholds, anomaly gating, and confidence. Experimental results show that SG-OIF achieves SOTA (State-Of-The-Art) on noise-label and out-of-distribution detection tasks across multiple datasets with various corruption. Notably, our approach achieves 91.1\% accuracy in the top 1\% prediction samples on the CIFAR-10 (20\% asym), and gets 99.8\% AUPR score on MNIST, effectively demonstrating that this framework is a practical controller for online influence estimation.

View on arXiv
Comments on this paper