Efficient Inference Using Large Language Models with Limited Human Data: Fine-Tuning then Rectification
- ALM

Driven by recent advances in artificial intelligence (AI), a growing body of work demonstrates the potential of using large language models (LLMs) to generate human-like responses in market research and social science applications. Two primary approaches can be applied to improve the performance of LLMs: fine-tuning, which aligns LLM predictions more closely with human responses, and rectification, which corrects biases in LLM outputs. In this paper, we develop a framework that combines fine-tuning and rectification, and optimally allocates limited labeled samples across the two stages. Unlike the conventional objective that minimizes the mean squared prediction errors, we propose to minimize the variance of the prediction errors as the fine-tuning objective, which is optimal for the downstream rectification stage. Building on this insight, we leverage empirical scaling laws to develop a data-driven method for optimally splitting samples between the fine-tuning and rectification stages. Empirical analysis validates our framework, demonstrating improved estimation and inference performance compared to using either fine-tuning or rectification alone.
View on arXiv