ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2511.19490
80
0

Generative Model-Aided Continual Learning for CSI Feedback in FDD mMIMO-OFDM Systems

23 November 2025
Guijun Liu
Yuwen Cao
T. Ohtsuki
Jiguang He
Shahid Mumtaz
    CLL
ArXiv (abs)PDFHTML
Main:4 Pages
6 Figures
Bibliography:1 Pages
3 Tables
Abstract

Deep autoencoder (DAE) frameworks have demonstrated their effectiveness in reducing channel state information (CSI) feedback overhead in massive multiple-input multiple-output (mMIMO) orthogonal frequency division multiplexing (OFDM) systems. However, existing CSI feedback models struggle to adapt to dynamic environments caused by user mobility, requiring retraining when encountering new CSI distributions. Moreover, returning to previously encountered environments often leads to performance degradation due to catastrophic forgetting. Continual learning involves enabling models to incorporate new information while maintaining performance on previously learned tasks. To address these challenges, we propose a generative adversarial network (GAN)-based learning approach for CSI feedback. By using a GAN generator as a memory unit, our method preserves knowledge from past environments and ensures consistently high performance across diverse scenarios without forgetting. Simulation results show that the proposed approach enhances the generalization capability of the DAE framework while maintaining low memory overhead. Furthermore, it can be seamlessly integrated with other advanced CSI feedback models, highlighting its robustness and adaptability.

View on arXiv
Comments on this paper