53

Orthographic Constraint Satisfaction and Human Difficulty Alignment in Large Language Models

Main:8 Pages
6 Figures
Bibliography:3 Pages
4 Tables
Abstract

Large language models must satisfy hard orthographic constraints during controlled text generation, yet systematic cross-architecture evaluation remains limited. We evaluate 28 configurations spanning three model families (Qwen3, Claude Haiku-4.5, GPT-5-mini) on 58 word puzzles requiring character-level constraint satisfaction. Architectural differences produce substantially larger performance gaps (2.0-2.2x, F1=0.761 vs. 0.343) than parameter scaling within families (83% gain from eightfold scaling), suggesting that constraint satisfaction may require specialized architectural features or training objectives beyond standard language model scaling. Thinking budget sensitivity proves heterogeneous: high-capacity models show strong returns (+0.102 to +0.136 F1), while mid-sized variants saturate or degrade. These patterns are inconsistent with uniform compute benefits. Using difficulty ratings from 10,000 human solvers per puzzle, we establish modest but consistent calibration (r=0.24-0.38) across all families, yet identify systematic failures on common words with unusual orthography ("data", "poop", "loll": 86-95% human success, 89-96% model miss rate). These failures reveal over-reliance on distributional plausibility that penalizes orthographically atypical but constraint-valid patterns, suggesting architectural innovations may be required beyond simply scaling parameters or computational budgets.

View on arXiv
Comments on this paper