ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2511.21098
10
0

Pygmalion Effect in Vision: Image-to-Clay Translation for Reflective Geometry Reconstruction

26 November 2025
Gayoung Lee
Junho Kim
Jin-Hwa Kim
Junmo Kim
    3DHAI4CE
ArXiv (abs)PDFHTML
Main:8 Pages
18 Figures
Bibliography:2 Pages
7 Tables
Appendix:4 Pages
Abstract

Understanding reflection remains a long-standing challenge in 3D reconstruction due to the entanglement of appearance and geometry under view-dependent reflections. In this work, we present the Pygmalion Effect in Vision, a novel framework that metaphorically "sculpts" reflective objects into clay-like forms through image-to-clay translation. Inspired by the myth of Pygmalion, our method learns to suppress specular cues while preserving intrinsic geometric consistency, enabling robust reconstruction from multi-view images containing complex reflections. Specifically, we introduce a dual-branch network in which a BRDF-based reflective branch is complemented by a clay-guided branch that stabilizes geometry and refines surface normals. The two branches are trained jointly using the synthesized clay-like images, which provide a neutral, reflection-free supervision signal that complements the reflective views. Experiments on both synthetic and real datasets demonstrate substantial improvement in normal accuracy and mesh completeness over existing reflection-handling methods. Beyond technical gains, our framework reveals that seeing by unshining, translating radiance into neutrality, can serve as a powerful inductive bias for reflective object geometry learning.

View on arXiv
Comments on this paper