ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2511.21399
212
0

Training Introspective Behavior: Fine-Tuning Induces Reliable Internal State Detection in a 7B Model

26 November 2025
Joshua Fonseca Rivera
ArXiv (abs)PDFHTML
Main:12 Pages
Bibliography:2 Pages
11 Tables
Appendix:2 Pages
Abstract

Lindsey (2025) investigates introspective awareness in language models through four experiments, finding that models can sometimes detect and identify injected activation patterns -- but unreliably (~20% success in the best model). We focus on the first of these experiments -- self-report of injected "thoughts" -- and ask whether this capability can be directly trained rather than waiting for emergence. Through fine-tuning on transient single-token injections, we transform a 7B parameter model from near-complete failure (0.4% accuracy, 6.7% false positive rate) to reliable detection (85% accuracy on held-out concepts at {\alpha}=40, 0% false positives). Our model detects fleeting "thoughts" injected at a single token position, retains that information, and reports the semantic content across subsequent generation steps. On this task, our trained model satisfies three of Lindsey's criteria: accuracy (correct identification), grounding (0/60 false positives), and internality (detection precedes verbalization). Generalization to unseen concept vectors (7.5pp gap) demonstrates the model learns a transferable skill rather than memorizing specific vectors, though this does not establish metacognitive representation in Lindsey's sense. These results address an open question raised by Lindsey: whether "training for introspection would help eliminate cross-model differences." We show that at least one component of introspective behavior can be directly induced, offering a pathway to built-in AI transparency.

View on arXiv
Comments on this paper