ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2511.21734
48
0

Asking LLMs to Verify First is Almost Free Lunch

21 November 2025
Shiguang Wu
Quanming Yao
    ReLMLRM
ArXiv (abs)PDFHTML
Main:9 Pages
7 Figures
Bibliography:2 Pages
4 Tables
Abstract

To enhance the reasoning capabilities of Large Language Models (LLMs) without high costs of training, nor extensive test-time sampling, we introduce Verification-First (VF), a strategy that prompts models to verify a provided candidate answer, even a trivial or random one, before generating a solution. This approach triggers a "reverse reasoning" process that is cognitively easier and complementary to standard forward Chain-of-Thought (CoT), effectively invoking the model's critical thinking to reduce logical errors. We further generalize the VF strategy to Iter-VF, a sequential test-time scaling (TTS) method that iteratively cycles the verification-generation process using the model's previous answer. Extensive experiments across various benchmarks (from mathematical reasoning to coding and agentic tasks) and various LLMs (from open-source 1B to cutting-edge commercial ones) confirm that VF with random answer consistently outperforms standard CoT with minimal computational overhead, and Iter-VF outperforms existing TTS strategies.

View on arXiv
Comments on this paper