ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2511.22247
85
0

FIGROTD: A Friendly-to-Handle Dataset for Image Guided Retrieval with Optional Text

27 November 2025
Hoang-Bao Le
Allie Tran
Binh T. Nguyen
Liting Zhou
C. Gurrin
ArXiv (abs)PDFHTML
Main:11 Pages
4 Figures
Bibliography:2 Pages
4 Tables
Appendix:1 Pages
Abstract

Image-Guided Retrieval with Optional Text (IGROT) unifies visual retrieval (without text) and composed retrieval (with text). Despite its relevance in applications like Google Image and Bing, progress has been limited by the lack of an accessible benchmark and methods that balance performance across subtasks. Large-scale datasets such as MagicLens are comprehensive but computationally prohibitive, while existing models often favor either visual or compositional queries. We introduce FIGROTD, a lightweight yet high-quality IGROT dataset with 16,474 training triplets and 1,262 test triplets across CIR, SBIR, and CSTBIR. To reduce redundancy, we propose the Variance Guided Feature Mask (VaGFeM), which selectively enhances discriminative dimensions based on variance statistics. We further adopt a dual-loss design (InfoNCE + Triplet) to improve compositional reasoning. Trained on FIGROTD, VaGFeM achieves competitive results on nine benchmarks, reaching 34.8 mAP@10 on CIRCO and 75.7 mAP@200 on Sketchy, outperforming stronger baselines despite fewer triplets.

View on arXiv
Comments on this paper