ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2511.22664
74
0

VaMP: Variational Multi-Modal Prompt Learning for Vision-Language Models

27 November 2025
Silin Cheng
Kai Han
    MLLMVPVLMVLM
ArXiv (abs)PDFHTML
Main:10 Pages
2 Figures
Bibliography:6 Pages
13 Tables
Appendix:5 Pages
Abstract

Vision-language models (VLMs), such as CLIP, have shown strong generalization under zero-shot settings, yet adapting them to downstream tasks with limited supervision remains a significant challenge. Existing multi-modal prompt learning methods typically rely on fixed, shared prompts and deterministic parameters, which limits their ability to capture instance-level variation or model uncertainty across diverse tasks and domains. To tackle this issue, we propose a novel Variational Multi-Modal Prompt Learning (VaMP) framework that enables sample-specific, uncertainty-aware prompt tuning in multi-modal representation learning. VaMP generates instance-conditioned prompts by sampling from a learned posterior distribution, allowing the model to personalize its behavior based on input content. To further enhance the integration of local and global semantics, we introduce a class-aware prior derived from the instance representation and class prototype. Building upon these, we formulate prompt tuning as variational inference over latent prompt representations and train the entire framework end-to-end through reparameterized sampling. Experiments on few-shot and domain generalization benchmarks show that VaMP achieves state-of-the-art performance, highlighting the benefits of modeling both uncertainty and task structure in our method. Project page:this https URL

View on arXiv
Comments on this paper