ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2511.23007
120
0

A transfer learning approach for automatic conflicts detection in software requirement sentence pairs based on dual encoders

28 November 2025
Y. X. R. Wang
Tao Jiang
Jinyan Bai
Zhengbin Zou
Tiancheng Xue
N. Zhang
Jie Luan
ArXiv (abs)PDFHTML
Main:20 Pages
Bibliography:1 Pages
3 Tables
Appendix:1 Pages
Abstract

Software Requirement Document (RD) typically contain tens of thousands of individual requirements, and ensuring consistency among these requirements is critical for the success of software engineering projects. Automated detection methods can significantly enhance efficiency and reduce costs; however, existing approaches still face several challenges, including low detection accuracy on imbalanced data, limited semantic extraction due to the use of a single encoder, and suboptimal performance in cross-domain transfer learning. To address these issues, this paper proposes a Transferable Software Requirement Conflict Detection Framework based on SBERT and SimCSE, termed TSRCDF-SS. First, the framework employs two independent encoders, Sentence-BERT (SBERT) and Simple Contrastive Sentence Embedding (SimCSE), to generate sentence embeddings for requirement pairs, followed by a six-element concatenation strategy. Furthermore, the classifier is enhanced by a two-layer fully connected feedforward neural network (FFNN) with a hybrid loss optimization strategy that integrates a variant of Focal Loss, domain-specific constraints, and a confidence-based penalty term. Finally, the framework synergistically integrates sequential and cross-domain transfer learning. Experimental results demonstrate that the proposed framework achieves a 10.4% improvement in both macro-F1 and weighted-F1 scores in in-domain settings, and an 11.4% increase in macro-F1 in cross-domain scenarios.

View on arXiv
Comments on this paper