ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2511.23238
110
0

SDE-Attention: Latent Attention in SDE-RNNs for Irregularly Sampled Time Series with Missing Data

28 November 2025
Yuting Fang
Qouc Le Gia
Flora Salim
    AI4TS
ArXiv (abs)PDFHTML
Main:9 Pages
4 Figures
Bibliography:2 Pages
5 Tables
Abstract

Irregularly sampled time series with substantial missing observations are common in healthcare and sensor networks. We introduce SDE-Attention, a family of SDE-RNNs equipped with channel-level attention on the latent pre-RNN state, including channel recalibration, time-varying feature attention, and pyramidal multi-scale self-attention. We therefore conduct a comparison on a synthetic periodic dataset and real-world benchmarks, under varying missing rate. Latent-space attention consistently improves over a vanilla SDE-RNN. On the univariate UCR datasets, the LSTM-based time-varying feature model SDE-TVF-L achieves the highest average accuracy, raising mean performance by approximately 4, 6, and 10 percentage points over the baseline at 30%, 60% and 90% missingness, respectively (averaged across datasets). On multivariate UEA benchmarks, attention-augmented models again outperform the backbone, with SDE-TVF-L yielding up to a 7% gain in mean accuracy under high missingness. Among the proposed mechanisms, time-varying feature attention is the most robust on univariate datasets. On multivariate datasets, different attention types excel on different tasks, showing that SDE-Attention can be flexibly adapted to the structure of each problem.

View on arXiv
Comments on this paper