ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2512.00208
64
0

ReactionMamba: Generating Short &Long Human Reaction Sequences

28 November 2025
Hajra Anwar Beg
Baptiste Chopin
Hao Tang
Mohamed Daoudi
    Mamba
ArXiv (abs)PDFHTML
Main:7 Pages
4 Figures
Bibliography:3 Pages
4 Tables
Abstract

We present ReactionMamba, a novel framework for generating long 3D human reaction motions. Reaction-Mamba integrates a motion VAE for efficient motion encoding with Mamba-based state-space models to decode temporally consistent reactions. This design enables ReactionMamba to generate both short sequences of simple motions and long sequences of complex motions, such as dance and martial arts. We evaluate ReactionMamba on three datasets--NTU120-AS, Lindy Hop, and InterX--and demonstrate competitive performance in terms of realism, diversity, and long-sequence generation compared to previous methods, including InterFormer, ReMoS, and Ready-to-React, while achieving substantial improvements in inference speed.

View on arXiv
Comments on this paper