28

Teleportation-Based Defenses for Privacy in Approximate Machine Unlearning

Mohammad M Maheri
Xavier Cadet
Peter Chin
Hamed Haddadi
Main:8 Pages
15 Figures
Bibliography:5 Pages
6 Tables
Appendix:24 Pages
Abstract

Approximate machine unlearning aims to efficiently remove the influence of specific data points from a trained model, offering a practical alternative to full retraining. However, it introduces privacy risks: an adversary with access to pre- and post-unlearning models can exploit their differences for membership inference or data reconstruction. We show these vulnerabilities arise from two factors: large gradient norms of forget-set samples and the close proximity of unlearned parameters to the original model. To demonstrate their severity, we propose unlearning-specific membership inference and reconstruction attacks, showing that several state-of-the-art methods (e.g., NGP, SCRUB) remain vulnerable. To mitigate this leakage, we introduce WARP, a plug-and-play teleportation defense that leverages neural network symmetries to reduce forget-set gradient energy and increase parameter dispersion while preserving predictions. This reparameterization obfuscates the signal of forgotten data, making it harder for attackers to distinguish forgotten samples from non-members or recover them via reconstruction. Across six unlearning algorithms, our approach achieves consistent privacy gains, reducing adversarial advantage (AUC) by up to 64% in black-box and 92% in white-box settings, while maintaining accuracy on retained data. These results highlight teleportation as a general tool for reducing attack success in approximate unlearning.

View on arXiv
Comments on this paper