63

From Coefficients to Directions: Rethinking Model Merging with Directional Alignment

Zhikang Chen
Sen Cui
Deheng Ye
Min Zhang
Gang Niu
Yu Zhang
Masashi Sugiyama
Tingting Zhu
Abstract

Model merging has emerged as a practical paradigm for integrating multiple independently trained models into a single model without joint retraining. Previous studies have demonstrated the effectiveness of combining parameters through strategies such as parameter decomposition, coefficient optimization, and subspace learning, significantly reducing the need for expensive joint training and achieving strong empirical performance across diverse tasks. However, these approaches predominantly treat merging as a problem of parameter space decomposition or fusion coefficient optimization, while overlooking the critical role of directional information in both parameter and feature spaces. In practice, naïve merging introduces inconsistencies in dominant parameter directions and disrupts structural coherence across models, which can degrade performance. Moreover, coefficient-based optimization methods implicitly assume compatible feature-space directions across models. However, Neural Collapse indicates that class features follow structured directional patterns, which may differ across independently trained models, making coefficient optimization alone insufficient. In this work, we emphasize the importance of \emph{directional alignment} and introduce a unified geometric framework, \emph{Merging with Directional Alignment} (\method{}), which aligns directional structures consistently in both the parameter and feature spaces. Our analysis shows that directional alignment improves structural coherence, and extensive experiments across benchmarks, model scales, and task configurations further validate the effectiveness of our approach.

View on arXiv
Main:9 Pages
4 Figures
Bibliography:4 Pages
22 Tables
Appendix:18 Pages
Comments on this paper