ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2512.00912
28
0

ForamDeepSlice: A High-Accuracy Deep Learning Framework for Foraminifera Species Classification from 2D Micro-CT Slices

30 November 2025
Abdelghafour Halimi
Ali Alibrahim
Didier Barradas-Bautista
Ronell Sicat
Abdulkader M. Afifi
ArXiv (abs)PDFHTML
Abstract

This study presents a comprehensive deep learning pipeline for the automated classification of 12 foraminifera species using 2D micro-CT slices derived from 3D scans. We curated a scientifically rigorous dataset comprising 97 micro-CT scanned specimens across 27 species, selecting 12 species with sufficient representation for robust machine learning. To ensure methodological integrity and prevent data leakage, we employed specimen-level data splitting, resulting in 109,617 high-quality 2D slices (44,103 for training, 14,046 for validation, and 51,468 for testing). We evaluated seven state-of-the-art 2D convolutional neural network (CNN) architectures using transfer learning. Our final ensemble model, combining ConvNeXt-Large and EfficientNetV2-Small, achieved a test accuracy of 95.64%, with a top-3 accuracy of 99.6% and an area under the ROC curve (AUC) of 0.998 across all species. To facilitate practical deployment, we developed an interactive advanced dashboard that supports real-time slice classification and 3D slice matching using advanced similarity metrics, including SSIM, NCC, and the Dice coefficient. This work establishes new benchmarks for AI-assisted micropaleontological identification and provides a fully reproducible framework for foraminifera classification research, bridging the gap between deep learning and applied geosciences.

View on arXiv
Main:10 Pages
10 Figures
Bibliography:4 Pages
8 Tables
Appendix:4 Pages
Comments on this paper