ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2512.02180
32
0

CLEF: Clinically-Guided Contrastive Learning for Electrocardiogram Foundation Models

1 December 2025
Yuxuan Shu
Peter H. Charlton
F. Kawsar
Jussi Hernesniemi
Mohammad Malekzadeh
ArXiv (abs)PDFHTMLGithub (1★)
Main:9 Pages
6 Figures
Bibliography:8 Pages
24 Tables
Appendix:15 Pages
Abstract

The electrocardiogram (ECG) is a key diagnostic tool in cardiovascular health. Single-lead ECG recording is integrated into both clinical-grade and consumer wearables. While self-supervised pretraining of foundation models on unlabeled ECGs improves diagnostic performance, existing approaches do not incorporate domain knowledge from clinical metadata. We introduce a novel contrastive learning approach that utilizes an established clinical risk score to adaptively weight negative pairs: clinically-guided contrastive learning. It aligns the similarities of ECG embeddings with clinically meaningful differences between subjects, with an explicit mechanism to handle missing metadata. On 12-lead ECGs from 161K patients in the MIMIC-IV dataset, we pretrain single-lead ECG foundation models at three scales, collectively called CLEF, using only routinely collected metadata without requiring per-sample ECG annotations. We evaluate CLEF on 18 clinical classification and regression tasks across 7 held-out datasets, and benchmark against 5 foundation model baselines and 3 self-supervised algorithms. When pretrained on 12-lead ECG data and tested on lead-I data, CLEF outperforms self-supervised foundation model baselines: the medium-sized CLEF achieves average AUROC improvements of at least 2.6% in classification and average reductions in MAEs of at least 3.2% in regression. Comparing with existing self-supervised learning algorithms, CLEF improves the average AUROC by at least 1.8%. Moreover, when pretrained only on lead-I data for classification tasks, CLEF performs comparably to the state-of-the-art ECGFounder, which was trained in a supervised manner. Overall, CLEF enables more accurate and scalable single-lead ECG analysis, advancing remote health monitoring. Code and pretrained CLEF models are available at:this http URL.

View on arXiv
Comments on this paper