ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2512.02214
40
0

Improved Training Mechanism for Reinforcement Learning via Online Model Selection

1 December 2025
Aida Afshar
Aldo Pacchiano
ArXiv (abs)PDFHTML
Main:8 Pages
10 Figures
Bibliography:2 Pages
1 Tables
Appendix:9 Pages
Abstract

We study the problem of online model selection in reinforcement learning, where the selector has access to a class of reinforcement learning agents and learns to adaptively select the agent with the right configuration. Our goal is to establish the improved efficiency and performance gains achieved by integrating online model selection methods into reinforcement learning training procedures. We examine the theoretical characterizations that are effective for identifying the right configuration in practice, and address three practical criteria from a theoretical perspective: 1) Efficient resource allocation, 2) Adaptation under non-stationary dynamics, and 3) Training stability across different seeds. Our theoretical results are accompanied by empirical evidence from various model selection tasks in reinforcement learning, including neural architecture selection, step-size selection, and self model selection.

View on arXiv
Comments on this paper