ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2512.02993
151
0

TEXTRIX: Latent Attribute Grid for Native Texture Generation and Beyond

2 December 2025
Yifei Zeng
Yajie Bao
Jiachen Qian
Shuang Wu
Youtian Lin
Hao Zhu
B. Li
Feihu Zhang
X. Cao
Yao Yao
ArXiv (abs)PDFHTML
Main:13 Pages
14 Figures
Bibliography:2 Pages
5 Tables
Abstract

Prevailing 3D texture generation methods, which often rely on multi-view fusion, are frequently hindered by inter-view inconsistencies and incomplete coverage of complex surfaces, limiting the fidelity and completeness of the generated content. To overcome these challenges, we introduce TEXTRIX, a native 3D attribute generation framework for high-fidelity texture synthesis and downstream applications such as precise 3D part segmentation. Our approach constructs a latent 3D attribute grid and leverages a Diffusion Transformer equipped with sparse attention, enabling direct coloring of 3D models in volumetric space and fundamentally avoiding the limitations of multi-view fusion. Built upon this native representation, the framework naturally extends to high-precision 3D segmentation by training the same architecture to predict semantic attributes on the grid. Extensive experiments demonstrate state-of-the-art performance on both tasks, producing seamless, high-fidelity textures and accurate 3D part segmentation with precise boundaries.

View on arXiv
Comments on this paper