ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2512.03525
156
0

Adaptive sampling using variational autoencoder and reinforcement learning

3 December 2025
Adil Rasheed
Mikael Aleksander Jansen Shahly
Muhammad Faisal Aftab
    DRL
ArXiv (abs)PDFHTML
Main:5 Pages
6 Figures
Bibliography:1 Pages
Abstract

Compressed sensing enables sparse sampling but relies on generic bases and random measurements, limiting efficiency and reconstruction quality. Optimal sensor placement uses historcal data to design tailored sampling patterns, yet its fixed, linear bases cannot adapt to nonlinear or sample-specific variations. Generative model-based compressed sensing improves reconstruction using deep generative priors but still employs suboptimal random sampling. We propose an adaptive sparse sensing framework that couples a variational autoencoder prior with reinforcement learning to select measurements sequentially. Experiments show that this approach outperforms CS, OSP, and Generative model-based reconstruction from sparse measurements.

View on arXiv
Comments on this paper