ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2512.04329
42
5

A Retrieval-Augmented Generation Approach to Extracting Algorithmic Logic from Neural Networks

3 December 2025
Waleed Khalid
D. Ignatov
Radu Timofte
ArXiv (abs)PDFHTMLGithub (1★)
Main:7 Pages
7 Figures
Bibliography:3 Pages
4 Tables
Abstract

Reusing existing neural-network components is central to research efficiency, yet discovering, extracting, and validating such modules across thousands of open-source repositories remains difficult. We introduce NN-RAG, a retrieval-augmented generation system that converts large, heterogeneous PyTorch codebases into a searchable and executable library of validated neural modules. Unlike conventional code search or clone-detection tools, NN-RAG performs scope-aware dependency resolution, import-preserving reconstruction, and validator-gated promotion -- ensuring that every retrieved block is scope-closed, compilable, and runnable. Applied to 19 major repositories, the pipeline extracted 1,289 candidate blocks, validated 941 (73.0%), and demonstrated that over 80% are structurally unique. Through multi-level de-duplication (exact, lexical, structural), we find that NN-RAG contributes the overwhelming majority of unique architectures to the LEMUR dataset, supplying approximately 72% of all novel network structures. Beyond quantity, NN-RAG uniquely enables cross-repository migration of architectural patterns, automatically identifying reusable modules in one project and regenerating them, dependency-complete, in another context. To our knowledge, no other open-source system provides this capability at scale. The framework's neutral specifications further allow optional integration with language models for synthesis or dataset registration without redistributing third-party code. Overall, NN-RAG transforms fragmented vision code into a reproducible, provenance-tracked substrate for algorithmic discovery, offering a first open-source solution that both quantifies and expands the diversity of executable neural architectures across repositories.

View on arXiv
Comments on this paper