ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2512.06105
0
0

Explainable Melanoma Diagnosis with Contrastive Learning and LLM-based Report Generation

5 December 2025
Junwen Zheng
Xinran Xu
Li Rong Wang
Chang Cai
Lucinda Siyun Tan
Dingyuan Wang
Hong Liang Tey
Xiuyi Fan
    MedIm
ArXiv (abs)PDFHTML
Main:7 Pages
6 Figures
Bibliography:1 Pages
5 Tables
Abstract

Deep learning has demonstrated expert-level performance in melanoma classification, positioning it as a powerful tool in clinical dermatology. However, model opacity and the lack of interpretability remain critical barriers to clinical adoption, as clinicians often struggle to trust the decision-making processes of black-box models. To address this gap, we present a Cross-modal Explainable Framework for Melanoma (CEFM) that leverages contrastive learning as the core mechanism for achieving interpretability. Specifically, CEFM maps clinical criteria for melanoma diagnosis-namely Asymmetry, Border, and Color (ABC)-into the Vision Transformer embedding space using dual projection heads, thereby aligning clinical semantics with visual features. The aligned representations are subsequently translated into structured textual explanations via natural language generation, creating a transparent link between raw image data and clinical interpretation. Experiments on public datasets demonstrate 92.79% accuracy and an AUC of 0.961, along with significant improvements across multiple interpretability metrics. Qualitative analyses further show that the spatial arrangement of the learned embeddings aligns with clinicians' application of the ABC rule, effectively bridging the gap between high-performance classification and clinical trust.

View on arXiv
Comments on this paper