68

Model-Based Reinforcement Learning Under Confounding

Nishanth Venkatesh
Andreas A. Malikopoulos
Main:7 Pages
3 Figures
Bibliography:2 Pages
Abstract

We investigate model-based reinforcement learning in contextual Markov decision processes (C-MDPs) in which the context is unobserved and induces confounding in the offline dataset. In such settings, conventional model-learning methods are fundamentally inconsistent, as the transition and reward mechanisms generated under a behavioral policy do not correspond to the interventional quantities required for evaluating a state-based policy. To address this issue, we adapt a proximal off-policy evaluation approach that identifies the confounded reward expectation using only observable state-action-reward trajectories under mild invertibility conditions on proxy variables. When combined with a behavior-averaged transition model, this construction yields a surrogate MDP whose Bellman operator is well defined and consistent for state-based policies, and which integrates seamlessly with the maximum causal entropy (MaxCausalEnt) model-learning framework. The proposed formulation enables principled model learning and planning in confounded environments where contextual information is unobserved, unavailable, or impractical to collect.

View on arXiv
Comments on this paper