ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2512.12701
72
0

Efficient Vision-Language Reasoning via Adaptive Token Pruning

14 December 2025
Xue Li
Xiaonan Song
Henry Hu
    VLM
ArXiv (abs)PDFHTML
Main:8 Pages
5 Figures
Bibliography:2 Pages
1 Tables
Abstract

Real-world deployment of Vision-Language Models (VLMs) is hindered by high computational demands, as existing architectures inefficiently process all tokens uniformly. We introduce Adaptive Token Pruning (ATP), a dynamic inference mechanism that retains only the most informative tokens based on contextual relevance. ATP operates at the vision-language interface, assigning a hybrid importance score combining ViT CLS attention (intra-modal saliency) and CLIP text-image similarity (inter-modal relevance) to keep top-K tokens for the LLM. Unlike static compression, ATP adapts to each input without modifying the backbone. Proposed as a lightweight gating module, ATP is compatible with popular backbones like BLIP-2, LLaVA, and Flamingo. Preliminary evaluations across VQAv2, GQA, and COCO indicate that ATP reduces inference FLOPs by around 40% and achieves roughly 1.5x speedups in end-to-end latency with negligible accuracy loss (less than 1%). Qualitative analyses suggest ATP preserves visual grounding and enhances interpretability. Beyond efficiency, we investigate robustness under corruptions; observations suggest adaptive pruning suppresses spurious correlations, improving stability. These findings imply that resource-constrained inference and model reliability are not competing objectives. Finally, we discuss ATP's role in efficient multimodal edge computing pipelines.

View on arXiv
Comments on this paper