ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2512.16219
80
0

Learning High-Quality Initial Noise for Single-View Synthesis with Diffusion Models

18 December 2025
Zhihao Zhang
Xuejun Yang
Weihua Liu
Mouquan Shen
    DiffM
ArXiv (abs)PDFHTMLGithub
Main:8 Pages
9 Figures
Bibliography:2 Pages
13 Tables
Appendix:6 Pages
Abstract

Single-view novel view synthesis (NVS) models based on diffusion models have recently attracted increasing attention, as they can generate a series of novel view images from a single image prompt and camera pose information as conditions. It has been observed that in diffusion models, certain high-quality initial noise patterns lead to better generation results than others. However, there remains a lack of dedicated learning frameworks that enable NVS models to learn such high-quality noise. To obtain high-quality initial noise from random Gaussian noise, we make the following contributions. First, we design a discretized Euler inversion method to inject image semantic information into random noise, thereby constructing paired datasets of random and high-quality noise. Second, we propose a learning framework based on an encoder-decoder network (EDN) that directly transforms random noise into high-quality noise. Experiments demonstrate that the proposed EDN can be seamlessly plugged into various NVS models, such as SV3D and MV-Adapter, achieving significant performance improvements across multiple datasets. Code is available at:this https URL.

View on arXiv
Comments on this paper