
Diagram-grounded geometry problem solving is a critical benchmark for multimodal large language models (MLLMs), yet the benefits of multi-agent design over single-agent remain unclear. We systematically compare single-agent and multi-agent pipelines on four visual math benchmarks: Geometry3K, MathVerse, OlympiadBench, and We-Math. For open-source models, multi-agent consistently improves performance. For example, Qwen-2.5-VL (7B) gains +6.8 points and Qwen-2.5-VL (32B) gains +3.3 on Geometry3K, and both Qwen-2.5-VL variants see further gains on OlympiadBench and We-Math. In contrast, the closed-source Gemini-2.0-Flash generally performs better in single-agent mode on classic benchmarks, while multi-agent yields only modest improvements on the newer We-Math dataset. These findings show that multi-agent pipelines provide clear benefits for open-source models and can assist strong proprietary systems on newer, less familiar benchmarks, but agentic decomposition is not universally optimal. All code, data, and reasoning files are available atthis https URL
View on arXiv