ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2601.07072
88
0

Overcoming the Retrieval Barrier: Indirect Prompt Injection in the Wild for LLM Systems

11 January 2026
Hongyan Chang
Ergute Bao
Xinjian Luo
Ting Yu
    SILMRALM
ArXiv (abs)PDFHTML
Main:14 Pages
17 Figures
Bibliography:5 Pages
5 Tables
Appendix:16 Pages
Abstract

Large language models (LLMs) increasingly rely on retrieving information from external corpora. This creates a new attack surface: indirect prompt injection (IPI), where hidden instructions are planted in the corpora and hijack model behavior once retrieved. Previous studies have highlighted this risk but often avoid the hardest step: ensuring that malicious content is actually retrieved. In practice, unoptimized IPI is rarely retrieved under natural queries, which leaves its real-world impact unclear.We address this challenge by decomposing the malicious content into a trigger fragment that guarantees retrieval and an attack fragment that encodes arbitrary attack objectives. Based on this idea, we design an efficient and effective black-box attack algorithm that constructs a compact trigger fragment to guarantee retrieval for any attack fragment. Our attack requires only API access to embedding models, is cost-efficient (as little as $0.21 per target user query on OpenAI's embedding models), and achieves near-100% retrieval across 11 benchmarks and 8 embedding models (including both open-source models and proprietary services).Based on this attack, we present the first end-to-end IPI exploits under natural queries and realistic external corpora, spanning both RAG and agentic systems with diverse attack objectives. These results establish IPI as a practical and severe threat: when a user issued a natural query to summarize emails on frequently asked topics, a single poisoned email was sufficient to coerce GPT-4o into exfiltrating SSH keys with over 80% success in a multi-agent workflow. We further evaluate several defenses and find that they are insufficient to prevent the retrieval of malicious text, highlighting retrieval as a critical open vulnerability.

View on arXiv
Comments on this paper