ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2601.11719
84
0
v1v2 (latest)

jBOT: Semantic Jet Representation Clustering Emerges from Self-Distillation

16 January 2026
Ho Fung Tsoi
Dylan Rankin
    SSL
ArXiv (abs)PDFHTMLGithub (1★)
10 Figures
4 Tables
Appendix:17 Pages
Abstract

Self-supervised learning is a powerful pre-training method for learning feature representations without labels, which often capture generic underlying semantics from the data and can later be fine-tuned for downstream tasks. In this work, we introduce jBOT, a pre-training method based on self-distillation for jet data from the CERN Large Hadron Collider, which combines local particle-level distillation with global jet-level distillation to learn jet representations that support downstream tasks such as anomaly detection and classification. We observe that pre-training on unlabeled jets leads to emergent semantic class clustering in the representation space. The clustering in the frozen embedding, when pre-trained on background jets only, enables anomaly detection via simple distance-based metrics, and the learned embedding can be fine-tuned for classification with improved performance compared to supervised models trained from scratch.

View on arXiv
Comments on this paper