11

Analytic Incremental Learning For Sound Source Localization With Imbalance Rectification

Zexia Fan
Yu Chen
Qiquan Zhang
Kainan Chen
Xinyuan Qian
Main:4 Pages
2 Figures
Bibliography:1 Pages
2 Tables
Abstract

Sound source localization (SSL) demonstrates remarkable results in controlled settings but struggles in real-world deployment due to dual imbalance challenges: intra-task imbalance arising from long-tailed direction-of-arrival (DoA) distributions, and inter-task imbalance induced by cross-task skews and overlaps. These often lead to catastrophic forgetting, significantly degrading the localization accuracy. To mitigate these issues, we propose a unified framework with two key innovations. Specifically, we design a GCC-PHAT-based data augmentation (GDA) method that leverages peak characteristics to alleviate intra-task distribution skews. We also propose an Analytic dynamic imbalance rectifier (ADIR) with task-adaption regularization, which enables analytic updates that adapt to inter-task dynamics. On the SSLR benchmark, our proposal achieves state-of-the-art (SoTA) results of 89.0% accuracy, 5.3° mean absolute error, and 1.6 backward transfer, demonstrating robustness to evolving imbalances without exemplar storage.

View on arXiv
Comments on this paper