11

Reinforcement Unlearning via Group Relative Policy Optimization

Efstratios Zaradoukas
Bardh Prenkaj
Gjergji Kasneci
Main:9 Pages
6 Figures
Bibliography:3 Pages
5 Tables
Appendix:13 Pages
Abstract

During pretraining, LLMs inadvertently memorize sensitive or copyrighted data, posing significant compliance challenges under legal frameworks like the GDPR and the EU AI Act. Fulfilling these mandates demands techniques that can remove information from a deployed model without retraining from scratch. Existing unlearning approaches attempt to address this need, but often leak the very data they aim to erase, sacrifice fluency and robustness, or depend on costly external reward models. We introduce PURGE (Policy Unlearning through Relative Group Erasure), a novel method grounded in the Group Relative Policy Optimization framework that formulates unlearning as a verifiable problem. PURGE uses an intrinsic reward signal that penalizes any mention of forbidden concepts, allowing safe and consistent unlearning. Our approach reduces token usage per target by up to a factor of 46 compared with SotA methods, while improving fluency by 5.48 percent and adversarial robustness by 12.02 percent over the base model. On the Real World Knowledge Unlearning (RWKU) benchmark, PURGE achieves 11 percent unlearning effectiveness while preserving 98 percent of original utility. PURGE shows that framing LLM unlearning as a verifiable task, enables more reliable, efficient, and scalable forgetting, suggesting a promising new direction for unlearning research that combines theoretical guarantees, improved safety, and practical deployment efficiency.

View on arXiv
Comments on this paper