4

ConPress: Learning Efficient Reasoning from Multi-Question Contextual Pressure

Jie Deng
Shining Liang
Jun Li
Hongzhi Li
Yutao Xie
Main:8 Pages
8 Figures
Bibliography:2 Pages
7 Tables
Appendix:5 Pages
Abstract

Large reasoning models (LRMs) typically solve reasoning-intensive tasks by generating long chain-of-thought (CoT) traces, leading to substantial inference overhead. We identify a reproducible inference-time phenomenon, termed Self-Compression: when multiple independent and answerable questions are presented within a single prompt, the model spontaneously produces shorter reasoning traces for each question. This phenomenon arises from multi-question contextual pressure during generation and consistently manifests across models and benchmarks. Building on this observation, we propose ConPress (Learning from Contextual Pressure), a lightweight self-supervised fine-tuning approach. ConPress constructs multi-question prompts to induce self-compression, samples the resulting model outputs, and parses and filters per-question traces to obtain concise yet correct reasoning trajectories. These trajectories are directly used for supervised fine-tuning, internalizing compressed reasoning behavior in single-question settings without external teachers, manual pruning, or reinforcement learning. With only 8k fine-tuning examples, ConPress reduces reasoning token usage by 59% on MATH500 and 33% on AIME25, while maintaining competitive accuracy.

View on arXiv
Comments on this paper