Mitigating Task-Order Sensitivity and Forgetting via Hierarchical Second-Order Consolidation
- CLL
We introduce , a framework that couples fast local adaptation with conservative, second-order global consolidation to address the high variance introduced by random task ordering. To address task-order effects, HTCL identifies the best intra-group task sequence and integrates the resulting local updates through a Hessian-regularized Taylor expansion, yielding a consolidation step with theoretical guarantees. The approach naturally extends to an -level hierarchy, enabling multiscale knowledge integration in a manner not supported by conventional single-level CL systems. Across a wide range of datasets and replay and regularization baselines, HTCL acts as a model-agnostic consolidation layer that consistently enhances performance, yielding mean accuracy gains of to while reducing the standard deviation of final accuracy by up to across random task permutations.
View on arXiv