6

ContextEvolve: Multi-Agent Context Compression for Systems Code Optimization

Hongyuan Su
Yu Zheng
Yong Li
Main:8 Pages
6 Figures
Bibliography:3 Pages
1 Tables
Appendix:2 Pages
Abstract

Large language models are transforming systems research by automating the discovery of performance-critical algorithms for computer systems. Despite plausible codes generated by LLMs, producing solutions that meet the stringent correctness and performance requirements of systems demands iterative optimization. Test-time reinforcement learning offers high search efficiency but requires parameter updates infeasible under API-only access, while existing training-free evolutionary methods suffer from inefficient context utilization and undirected search. We introduce ContextEvolve, a multi-agent framework that achieves RL-level search efficiency under strict parameter-blind constraints by decomposing optimization context into three orthogonal dimensions: a Summarizer Agent condenses semantic state via code-to-language abstraction, a Navigator Agent distills optimization direction from trajectory analysis, and a Sampler Agent curates experience distribution through prioritized exemplar retrieval. This orchestration forms a functional isomorphism with RL-mapping to state representation, policy gradient, and experience replay-enabling principled optimization in a textual latent space. On the ADRS benchmark, ContextEvolve outperforms state-of-the-art baselines by 33.3% while reducing token consumption by 29.0%. Codes for our work are released atthis https URL

View on arXiv
Comments on this paper