17

Feature, Alignment, and Supervision in Category Learning: A Comparative Approach with Children and Neural Networks

Fanxiao Wani Qiu
Oscar Leong
Main:9 Pages
5 Figures
Bibliography:3 Pages
1 Tables
Abstract

Understanding how humans and machines learn from sparse data is central to cognitive science and machine learning. Using a species-fair design, we compare children and convolutional neural networks (CNNs) in a few-shot semi-supervised category learning task. Both learners are exposed to novel object categories under identical conditions. Learners receive mixtures of labeled and unlabeled exemplars while we vary supervision (1/3/6 labels), target feature (size, shape, pattern), and perceptual alignment (high/low). We find that children generalize rapidly from minimal labels but show strong feature-specific biases and sensitivity to alignment. CNNs show a different interaction profile: added supervision improves performance, but both alignment and feature structure moderate the impact additional supervision has on learning. These results show that human-model comparisons must be drawn under the right conditions, emphasizing interactions among supervision, feature structure, and alignment rather than overall accuracy.

View on arXiv
Comments on this paper