2

Bypassing AI Control Protocols via Agent-as-a-Proxy Attacks

Jafar Isbarov
Murat Kantarcioglu
Main:8 Pages
6 Figures
Bibliography:2 Pages
7 Tables
Appendix:5 Pages
Abstract

As AI agents automate critical workloads, they remain vulnerable to indirect prompt injection (IPI) attacks. Current defenses rely on monitoring protocols that jointly evaluate an agent's Chain-of-Thought (CoT) and tool-use actions to ensure alignment with user intent. We demonstrate that these monitoring-based defenses can be bypassed via a novel Agent-as-a-Proxy attack, where prompt injection attacks treat the agent as a delivery mechanism, bypassing both agent and monitor simultaneously. While prior work on scalable oversight has focused on whether small monitors can supervise large agents, we show that even frontier-scale monitors are vulnerable. Large-scale monitoring models like Qwen2.5-72B can be bypassed by agents with similar capabilities, such as GPT-4o mini and Llama-3.1-70B. On the AgentDojo benchmark, we achieve a high attack success rate against AlignmentCheck and Extract-and-Evaluate monitors under diverse monitoring LLMs. Our findings suggest current monitoring-based agentic defenses are fundamentally fragile regardless of model scale.

View on arXiv
Comments on this paper