1

SynAT: Enhancing Security Knowledge Bases via Automatic Synthesizing Attack Tree from Crowd Discussions

Ziyou Jiang
Lin Shi
Guowei Yang
Xuyan Ma
Fenglong Li
Qing Wang
Main:24 Pages
12 Figures
Bibliography:4 Pages
11 Tables
Abstract

Cyber attacks have become a serious threat to the security of software systems. Many organizations have built their security knowledge bases to safeguard against attacks and vulnerabilities. However, due to the time lag in the official release of security information, these security knowledge bases may not be well maintained, and using them to protect software systems against emergent security risks can be challenging. On the other hand, the security posts on online knowledge-sharing platforms contain many crowd security discussions and the knowledge in those posts can be used to enhance the security knowledge bases. This paper proposes SynAT, an automatic approach to synthesize attack trees from crowd security posts. Given a security post, SynAT first utilize the Large Language Model (LLM) and prompt learning to restrict the scope of sentences that may contain attack information; then it utilizes a transition-based event and relation extraction model to extract the events and relations simultaneously from the scope; finally, it applies heuristic rules to synthesize the attack trees with the extracted events and relations. An experimental evaluation is conducted on 5,070 Stack Overflow security posts, and the results show that SynAT outperforms all baselines in both event and relation extraction, and achieves the highest tree similarity in attack tree synthesis. Furthermore, SynAT has been applied to enhance HUAWEI's security knowledge base as well as public security knowledge bases CVE and CAPEC, which demonstrates SynAT's practicality.

View on arXiv
Comments on this paper