2

ShapeGaussian: High-Fidelity 4D Human Reconstruction in Monocular Videos via Vision Priors

Zhenxiao Liang
Ning Zhang
Youbao Tang
Ruei-Sung Lin
Qixing Huang
Peng Chang
Jing Xiao
Main:10 Pages
8 Figures
Bibliography:3 Pages
4 Tables
Appendix:3 Pages
Abstract

We introduce ShapeGaussian, a high-fidelity, template-free method for 4D human reconstruction from casual monocular videos. Generic reconstruction methods lacking robust vision priors, such as 4DGS, struggle to capture high-deformation human motion without multi-view cues. While template-based approaches, primarily relying on SMPL, such as HUGS, can produce photorealistic results, they are highly susceptible to errors in human pose estimation, often leading to unrealistic artifacts. In contrast, ShapeGaussian effectively integrates template-free vision priors to achieve both high-fidelity and robust scene reconstructions. Our method follows a two-step pipeline: first, we learn a coarse, deformable geometry using pretrained models that estimate data-driven priors, providing a foundation for reconstruction. Then, we refine this geometry using a neural deformation model to capture fine-grained dynamic details. By leveraging 2D vision priors, we mitigate artifacts from erroneous pose estimation in template-based methods and employ multiple reference frames to resolve the invisibility issue of 2D keypoints in a template-free manner. Extensive experiments demonstrate that ShapeGaussian surpasses template-based methods in reconstruction accuracy, achieving superior visual quality and robustness across diverse human motions in casual monocular videos.

View on arXiv
Comments on this paper