22

Subgraph Reconstruction Attacks on Graph RAG Deployments with Practical Defenses

Minkyoo Song
Jaehan Kim
Myungchul Kang
Hanna Kim
Seungwon Shin
Sooel Son
Main:11 Pages
17 Figures
Bibliography:3 Pages
10 Tables
Appendix:1 Pages
Abstract

Graph-based retrieval-augmented generation (Graph RAG) is increasingly deployed to support LLM applications by augmenting user queries with structured knowledge retrieved from a knowledge graph. While Graph RAG improves relational reasoning, it introduces a largely understudied threat: adversaries can reconstruct subgraphs from a target RAG system's knowledge graph, enabling privacy inference and replication of curated knowledge assets. We show that existing attacks are largely ineffective against Graph RAG even with simple prompt-based safeguards, because these attacks expose explicit exfiltration intent and are therefore easily suppressed by lightweight safe prompts. We identify three technical challenges for practical Graph RAG extraction under realistic safeguards and introduce GRASP, a closed-box, multi-turn subgraph reconstruction attack. GRASP (i) reframes extraction as a context-processing task, (ii) enforces format-compliant, instance-grounded outputs via per-record identifiers to reduce hallucinations and preserve relational details, and (iii) diversifies goal-driven attack queries using a momentum-aware scheduler to operate within strict query budgets. Across two real-world knowledge graphs, four safety-aligned LLMs, and multiple Graph RAG frameworks, GRASP attains the strongest type-faithful reconstruction where prior methods fail, reaching up to 82.9 F1. We further evaluate defenses and propose two lightweight mitigations that substantially reduce reconstruction fidelity without utility loss.

View on arXiv
Comments on this paper