ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 0811.1115
  4. Cited By
Selection of variables and dimension reduction in high-dimensional
  non-parametric regression

Selection of variables and dimension reduction in high-dimensional non-parametric regression

7 November 2008
Karine Bertin
Guillaume Lecué
ArXivPDFHTML

Papers citing "Selection of variables and dimension reduction in high-dimensional non-parametric regression"

4 / 4 papers shown
Title
Lasso-type recovery of sparse representations for high-dimensional data
Lasso-type recovery of sparse representations for high-dimensional data
N. Meinshausen
Bin Yu
275
879
0
01 Jun 2008
Rodeo: Sparse, greedy nonparametric regression
Rodeo: Sparse, greedy nonparametric regression
John D. Lafferty
Larry A. Wasserman
142
137
0
12 Mar 2008
Simultaneous analysis of Lasso and Dantzig selector
Simultaneous analysis of Lasso and Dantzig selector
Peter J. Bickel
Yaácov Ritov
Alexandre B. Tsybakov
367
2,527
0
07 Jan 2008
Local polynomial regression on unknown manifolds
Local polynomial regression on unknown manifolds
Peter J. Bickel
Bo Li
213
129
0
07 Aug 2007
1