ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 0904.0977
81
56

Bayesian MAP Model Selection of Chain Event Graphs

6 April 2009
Guy Freeman
Jim Q. Smith
    BDL
ArXiv (abs)PDFHTML
Abstract

The class of chain event graph models is a generalisation of the class of discrete Bayesian networks, retaining most of the structural advantages of the Bayesian network for model interrogation, propagation and learning, while more naturally encoding asymmetric state spaces and the order in which events happen. In this paper we demonstrate how with complete sampling, conjugate closed form model selection based on product Dirichlet priors is possible, and prove that suitable homogeneity assumptions characterise the product Dirichlet prior on this class of models. We demonstrate our techniques using two educational examples.

View on arXiv
Comments on this paper