Neighbor communities
0 / 0 papers shown
Title |
|---|
Top Contributors
| Name | # Papers | # Citations |
|---|---|---|
Social Events
| Date | Location | Event |
|---|---|---|
Title |
|---|
| Name | # Papers | # Citations |
|---|---|---|
| Date | Location | Event |
|---|---|---|
Bayesian Deep Learning is a field that combines Bayesian probability theory with deep learning. It aims to provide a principled way of quantifying uncertainty in neural network predictions.
Title |
|---|
Title | |||
|---|---|---|---|
![]() BaGGLS: A Bayesian Shrinkage Framework for Interpretable Modeling of Interactions in High-Dimensional Biological Data Marta S. Lemanczyk Lucas Kock Johanna Schlimme Nadja Klein Bernhard Y. Renard | |||
![]() DeepBlip: Estimating Conditional Average Treatment Effects Over Time Haorui Ma Dennis Frauen Stefan Feuerriegel | |||
![]() Bridging the Gap Between Bayesian Deep Learning and Ensemble Weather Forecasts Xinlei Xiong Wenbo Hu Shuxun Zhou Kaifeng Bi Lingxi Xie Ying Liu Richang Hong Qi Tian | |||
![]() Notes on Kernel Methods in Machine Learning Diego Armando Pérez-Rosero Danna Valentina Salazar-Dubois Juan Camilo Lugo-Rojas Andrés Marino Álvarez-Meza Germán Castellanos-Dominguez | |||
![]() Neural Variational Dropout ProcessesInternational Conference on Learning Representations (ICLR), 2025 | |||
| Name (-) |
|---|
| Name (-) |
|---|
| Name (-) |
|---|
| Date | Location | Event | |
|---|---|---|---|
| No social events available | |||