ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2512.01500
16
0

Walking on the Fiber: A Simple Geometric Approximation for Bayesian Neural Networks

1 December 2025
Alfredo Reichlin
Miguel Vasco
Danica Kragic
    BDLUQCV
ArXiv (abs)PDFHTML
Abstract

Bayesian Neural Networks provide a principled framework for uncertainty quantification by modeling the posterior distribution of network parameters. However, exact posterior inference is computationally intractable, and widely used approximations like the Laplace method struggle with scalability and posterior accuracy in modern deep networks. In this work, we revisit sampling techniques for posterior exploration, proposing a simple variation tailored to efficiently sample from the posterior in over-parameterized networks by leveraging the low-dimensional structure of loss minima. Building on this, we introduce a model that learns a deformation of the parameter space, enabling rapid posterior sampling without requiring iterative methods. Empirical results demonstrate that our approach achieves competitive posterior approximations with improved scalability compared to recent refinement techniques. These contributions provide a practical alternative for Bayesian inference in deep learning.

View on arXiv
Main:11 Pages
12 Figures
Bibliography:3 Pages
4 Tables
Appendix:8 Pages
Comments on this paper