ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1001.1020
  4. Cited By
An Empirical Evaluation of Four Algorithms for Multi-Class
  Classification: Mart, ABC-Mart, Robust LogitBoost, and ABC-LogitBoost

An Empirical Evaluation of Four Algorithms for Multi-Class Classification: Mart, ABC-Mart, Robust LogitBoost, and ABC-LogitBoost

7 January 2010
Ping Li
ArXiv (abs)PDFHTML

Papers citing "An Empirical Evaluation of Four Algorithms for Multi-Class Classification: Mart, ABC-Mart, Robust LogitBoost, and ABC-LogitBoost"

1 / 1 papers shown
Title
AOSO-LogitBoost: Adaptive One-Vs-One LogitBoost for Multi-Class Problem
AOSO-LogitBoost: Adaptive One-Vs-One LogitBoost for Multi-Class Problem
Peng Sun
Mark D. Reid
Jie Zhou
70
13
0
18 Oct 2011
1