ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1010.1595
  4. Cited By
Using parallel computation to improve Independent Metropolis--Hastings
  based estimation
v1v2v3 (latest)

Using parallel computation to improve Independent Metropolis--Hastings based estimation

8 October 2010
Pierre E. Jacob
Christian P. Robert
Murray H. Smith
ArXiv (abs)PDFHTML

Papers citing "Using parallel computation to improve Independent Metropolis--Hastings based estimation"

16 / 16 papers shown
Title
Computing Bayes: From Then 'Til Now'
Computing Bayes: From Then 'Til Now'
G. Martin
David T. Frazier
Christian P. Robert
102
16
0
01 Aug 2022
Exact Convergence Analysis for Metropolis-Hastings Independence Samplers
  in Wasserstein Distances
Exact Convergence Analysis for Metropolis-Hastings Independence Samplers in Wasserstein Distances
Austin R. Brown
Galin L. Jones
94
7
0
19 Nov 2021
MCMC-driven importance samplers
MCMC-driven importance samplers
F. Llorente
E. Curbelo
Luca Martino
Victor Elvira
D. Delgado
113
11
0
06 May 2021
Computing Bayes: Bayesian Computation from 1763 to the 21st Century
Computing Bayes: Bayesian Computation from 1763 to the 21st Century
G. Martin
David T. Frazier
Christian P. Robert
104
17
0
14 Apr 2020
Bayesian epidemiological modeling over high-resolution network data
Bayesian epidemiological modeling over high-resolution network data
Stefan Engblom
Robin Eriksson
S. Widgren
95
15
0
25 Oct 2019
Accelerating MCMC Algorithms
Accelerating MCMC Algorithms
Christian P. Robert
Victor Elvira
Nicholas G. Tawn
Changye Wu
107
141
0
08 Apr 2018
Unbiased Markov chain Monte Carlo with couplings
Unbiased Markov chain Monte Carlo with couplings
Pierre E. Jacob
J. O'Leary
Yves F. Atchadé
134
73
0
11 Aug 2017
Metropolis Sampling
Metropolis Sampling
Luca Martino
Victor Elvira
84
25
0
15 Apr 2017
Orthogonal parallel MCMC methods for sampling and optimization
Orthogonal parallel MCMC methods for sampling and optimization
Luca Martino
Victor Elvira
D. Luengo
J. Corander
F. Louzada
93
74
0
30 Jul 2015
Leave Pima Indians alone: binary regression as a benchmark for Bayesian
  computation
Leave Pima Indians alone: binary regression as a benchmark for Bayesian computation
Nicolas Chopin
James Ridgway
105
76
0
29 Jun 2015
Accelerated dimension-independent adaptive Metropolis
Accelerated dimension-independent adaptive Metropolis
Yuxin Chen
David E. Keyes
K. Law
Hatem Ltaief
63
22
0
18 Jun 2015
Layered Adaptive Importance Sampling
Layered Adaptive Importance Sampling
Luca Martino
Victor Elvira
D. Luengo
J. Corander
94
108
0
18 May 2015
Markov Interacting Importance Samplers
Markov Interacting Importance Samplers
Eduardo F. Mendes
Marcel Scharth
Robert Kohn
VLM
87
3
0
25 Feb 2015
Bayesian computation: a perspective on the current state, and sampling
  backwards and forwards
Bayesian computation: a perspective on the current state, and sampling backwards and forwards
P. Green
K. Latuszyñski
Marcelo Pereyra
Christian P. Robert
131
21
0
04 Feb 2015
Accelerating Metropolis-Hastings algorithms: Delayed acceptance with
  prefetching
Accelerating Metropolis-Hastings algorithms: Delayed acceptance with prefetching
Marco Banterle
Clara Grazian
Christian P. Robert
76
13
0
10 Jun 2014
Decomposition Sampling applied to Parallelization of Metropolis-Hastings
Decomposition Sampling applied to Parallelization of Metropolis-Hastings
J. Hallgren
T. Koski
63
3
0
12 Feb 2014
1