Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1102.0075
Cited By
Vector Diffusion Maps and the Connection Laplacian
1 February 2011
A. Singer
Hau-Tieng Wu
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Vector Diffusion Maps and the Connection Laplacian"
50 / 106 papers shown
Title
Curvature Enhanced Data Augmentation for Regression
Ilya Kaufman Sirot
Omri Azencot
18
0
0
07 Jun 2025
Higher-Order Group Synchronization
Adriana L. Duncan
Joe Kileel
64
0
0
28 May 2025
Copresheaf Topological Neural Networks: A Generalized Deep Learning Framework
Mustafa Hajij
Lennart Bastian
Sarah Osentoski
Hardik Kabaria
John L. Davenport
...
Joseph G. Kocheemoolayil
Nastaran Shahmansouri
Adrian Lew
Theodore Papamarkou
Tolga Birdal
45
0
0
27 May 2025
Supervised Manifold Learning for Functional Data
Ruoxu Tan
Yiming Zang
132
0
0
23 Mar 2025
A Survey on Computational Solutions for Reconstructing Complete Objects by Reassembling Their Fractured Parts
Jiaxin Lu
Yongqing Liang
Huijun Han
Jiacheng Hua
Junfeng Jiang
Xin Li
Qixing Huang
3DV
137
3
0
18 Oct 2024
SRIF: Semantic Shape Registration Empowered by Diffusion-based Image Morphing and Flow Estimation
Mingze Sun
Chen Guo
Puhua Jiang
Shiwei Mao
Yurun Chen
Ruqi Huang
95
4
0
18 Sep 2024
Boundary Detection Algorithm Inspired by Locally Linear Embedding
Pei-Cheng Kuo
Nan Wu
55
0
0
26 Jun 2024
First-Order Manifold Data Augmentation for Regression Learning
Ilya Kaufman
Omri Azencot
52
4
0
16 Jun 2024
Bundle Neural Networks for message diffusion on graphs
Jacob Bamberger
Federico Barbero
Xiaowen Dong
Michael M. Bronstein
118
3
0
24 May 2024
Random Multi-Type Spanning Forests for Synchronization on Sparse Graphs
Hugo Jaquard
P. Amblard
Simon Barthelmé
Nicolas M Tremblay
62
1
0
28 Mar 2024
Path Signatures and Graph Neural Networks for Slow Earthquake Analysis: Better Together?
Hans Riess
M. Veveakis
Michael M. Zavlanos
135
2
0
05 Feb 2024
Convergence analysis of t-SNE as a gradient flow for point cloud on a manifold
Seonghyeon Jeong
Hau-tieng Wu
49
3
0
31 Jan 2024
Multi-Irreducible Spectral Synchronization for Robust Rotation Averaging
Owen Howell
Haoen Huang
David Rosen
64
0
0
28 Nov 2023
Manifold learning: what, how, and why
M. Meilă
Hanyu Zhang
88
59
0
07 Nov 2023
Implicit Gaussian process representation of vector fields over arbitrary latent manifolds
Robert L. Peach
M. Vinao-Carl
Nir Grossman
Michael David
Emma-Jane Mallas
David Sharp
Paresh A. Malhotra
P. Vandergheynst
Adam Gosztolai
90
5
0
28 Sep 2023
Principal subbundles for dimension reduction
M. Akhøj
J. Benn
E. Grong
Stefan Sommer
Xavier Pennec
80
1
0
06 Jul 2023
Structural Balance and Random Walks on Complex Networks with Complex Weights
Yu Tian
R. Lambiotte
50
11
0
04 Jul 2023
Data Representations' Study of Latent Image Manifolds
Ilya Kaufman
Omri Azencot
69
8
0
31 May 2023
Zoo Guide to Network Embedding
Anthony Baptista
Rubén J. Sánchez-García
A. Baudot
Ginestra Bianconi
GNN
87
7
0
05 May 2023
Interpretable statistical representations of neural population dynamics and geometry
Adam Gosztolai
Robert L. Peach
Alexis Arnaudon
Mauricio Barahona
P. Vandergheynst
78
10
0
06 Apr 2023
The G-invariant graph Laplacian
E. Rosen
Paulina Hoyos
Xiuyuan Cheng
Joe Kileel
Y. Shkolnisky
52
1
0
29 Mar 2023
Tangent Bundle Convolutional Learning: from Manifolds to Cellular Sheaves and Back
Claudio Battiloro
Zhiyang Wang
Hans Riess
Paolo Di Lorenzo
Alejandro Ribeiro
72
11
0
20 Mar 2023
Dictionary-based Manifold Learning
Hanyu Zhang
Samson Koelle
M. Meilă
140
1
0
01 Feb 2023
Interpretable Dimensionality Reduction by Feature Preserving Manifold Approximation and Projection
Yang Yang
Hongjian Sun
Jialei Gong
Di Yu
FAtt
58
2
0
17 Nov 2022
Augmentation Invariant Manifold Learning
Shulei Wang
244
1
0
01 Nov 2022
Tangent Bundle Filters and Neural Networks: from Manifolds to Cellular Sheaves and Back
Claudio Battiloro
Zhiyang Wang
Hans Riess
P. Lorenzo
Alejandro Ribeiro
96
14
0
26 Oct 2022
Smoothing complex-valued signals on Graphs with Monte-Carlo
Hugo Jaquard
Michaël Fanuel
P. Amblard
Rémi Bardenet
Simon Barthelmé
Nicolas M Tremblay
98
3
0
15 Oct 2022
Graph Convolutional Networks from the Perspective of Sheaves and the Neural Tangent Kernel
Thomas Gebhart
GNN
58
1
0
19 Aug 2022
Geometric Scattering on Measure Spaces
Joyce A. Chew
M. Hirn
Smita Krishnaswamy
Deanna Needell
Michael Perlmutter
H. Steach
Siddharth Viswanath
Hau‐Tieng Wu
GNN
230
19
0
17 Aug 2022
Probabilistic PolarGMM: Unsupervised Cluster Learning of Very Noisy Projection Images of Unknown Pose
Supawit Chockchowwat
Minh Nguyen
45
0
0
26 Jun 2022
Robust Group Synchronization via Quadratic Programming
Yunpeng Shi
Cole Wyeth
Gilad Lerman
44
8
0
17 Jun 2022
Sheaf Neural Networks with Connection Laplacians
Federico Barbero
Cristian Bodnar
Haitz Sáez de Ocáriz Borde
Michael M. Bronstein
Petar Velivcković
Pietro Lio
70
43
0
17 Jun 2022
Learning Effective SDEs from Brownian Dynamics Simulations of Colloidal Particles
N. Evangelou
Felix Dietrich
J. M. Bello-Rivas
Alex J Yeh
Rachel Stein
M. Bevan
Ioannis G. Kevekidis
DiffM
68
5
0
30 Apr 2022
Diffusion of Information on Networked Lattices by Gossip
Hans Riess
Robert Ghrist
71
10
0
01 Apr 2022
Learning Low-Dimensional Nonlinear Structures from High-Dimensional Noisy Data: An Integral Operator Approach
Xiucai Ding
Rongkai Ma
95
9
0
28 Feb 2022
Neural Sheaf Diffusion: A Topological Perspective on Heterophily and Oversmoothing in GNNs
Cristian Bodnar
Francesco Di Giovanni
B. Chamberlain
Pietro Lio
Michael M. Bronstein
99
183
0
09 Feb 2022
A survey of unsupervised learning methods for high-dimensional uncertainty quantification in black-box-type problems
Katiana Kontolati
Dimitrios Loukrezis
D. D. Giovanis
Lohit Vandanapu
Michael D. Shields
68
43
0
09 Feb 2022
Manifold learning via quantum dynamics
Akshat Kumar
M. Sarovar
64
0
0
20 Dec 2021
Inferring Manifolds From Noisy Data Using Gaussian Processes
David B. Dunson
Nan Wu
91
18
0
14 Oct 2021
Tangent Space and Dimension Estimation with the Wasserstein Distance
Uzu Lim
Harald Oberhauser
Vidit Nanda
93
8
0
12 Oct 2021
Weisfeiler and Lehman Go Cellular: CW Networks
Cristian Bodnar
Fabrizio Frasca
N. Otter
Yu Guang Wang
Pietro Lio
Guido Montúfar
M. Bronstein
GNN
133
237
0
23 Jun 2021
Laplacian-Based Dimensionality Reduction Including Spectral Clustering, Laplacian Eigenmap, Locality Preserving Projection, Graph Embedding, and Diffusion Map: Tutorial and Survey
Benyamin Ghojogh
A. Ghodsi
Fakhri Karray
Mark Crowley
65
12
0
03 Jun 2021
Efficient
Z
2
\mathbb{Z}_2
Z
2
synchronization on
Z
d
\mathbb{Z}^d
Z
d
under symmetry-preserving side information
A. Alaoui
36
0
0
03 Jun 2021
Joint Community Detection and Rotational Synchronization via Semidefinite Programming
Yifeng Fan
Y. Khoo
Zhizhen Zhao
58
6
0
13 May 2021
HodgeNet: Learning Spectral Geometry on Triangle Meshes
Dmitriy Smirnov
Justin Solomon
87
26
0
26 Apr 2021
Helmholtzian Eigenmap: Topological feature discovery & edge flow learning from point cloud data
Yu-Chia Chen
Weicheng Wu
M. Meilă
Ioannis G. Kevrekidis
59
12
0
13 Mar 2021
An extension of the angular synchronization problem to the heterogeneous setting
Ning Zhang
Hemant Tyagi
41
6
0
29 Dec 2020
Sheaf Neural Networks
J. Hansen
Thomas Gebhart
GNN
48
43
0
08 Dec 2020
Impact of signal-to-noise ratio and bandwidth on graph Laplacian spectrum from high-dimensional noisy point cloud
Xiucai Ding
Hau‐Tieng Wu
119
13
0
21 Nov 2020
Grassmannian diffusion maps based dimension reduction and classification for high-dimensional data
K. D. Santos
D. D. Giovanis
Michael D. Shields
DiffM
39
10
0
16 Sep 2020
1
2
3
Next