ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1106.3885
  4. Cited By
A nonparametric empirical Bayes framework for large-scale multiple
  testing
v1v2v3 (latest)

A nonparametric empirical Bayes framework for large-scale multiple testing

20 June 2011
Ryan Martin
S. Tokdar
ArXiv (abs)PDFHTML

Papers citing "A nonparametric empirical Bayes framework for large-scale multiple testing"

5 / 5 papers shown
Title
Interpretation of local false discovery rates under the zero assumption
Interpretation of local false discovery rates under the zero assumption
Daniel Xiang
Nikolaos Ignatiadis
Peter McCullagh
22
0
0
13 Feb 2024
Multiple Hypothesis Testing Framework for Spatial Signals
Multiple Hypothesis Testing Framework for Spatial Signals
Martin Gölz
A. Zoubir
V. Koivunen
73
12
0
27 Aug 2021
False discovery rate smoothing
False discovery rate smoothing
Wesley Tansey
Oluwasanmi Koyejo
R. Poldrack
James G. Scott
64
48
0
22 Nov 2014
Imprecise Dirichlet Process with application to the hypothesis test on
  the probability that X< Y
Imprecise Dirichlet Process with application to the hypothesis test on the probability that X< Y
A. Benavoli
Francesca Mangili
Fabrizio Ruggeri
Marco Zaffalon
92
16
0
12 Feb 2014
Asymptotically minimax empirical Bayes estimation of a sparse normal
  mean vector
Asymptotically minimax empirical Bayes estimation of a sparse normal mean vector
Ryan Martin
S. Walker
114
65
0
27 Apr 2013
1