ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1106.4729
  4. Cited By
Relative Density-Ratio Estimation for Robust Distribution Comparison

Relative Density-Ratio Estimation for Robust Distribution Comparison

23 June 2011
M. Yamada
Taiji Suzuki
Takafumi Kanamori
Hirotaka Hachiya
Masashi Sugiyama
ArXiv (abs)PDFHTML

Papers citing "Relative Density-Ratio Estimation for Robust Distribution Comparison"

50 / 90 papers shown
Title
Projection Pursuit Density Ratio Estimation
Projection Pursuit Density Ratio Estimation
Meilin Wang
Wei Huang
Mingming Gong
Zheng Zhang
53
0
0
01 Jun 2025
Computational Efficiency under Covariate Shift in Kernel Ridge Regression
Computational Efficiency under Covariate Shift in Kernel Ridge Regression
Andrea Della Vecchia
Arnaud Mavakala Watusadisi
Ernesto De Vito
Lorenzo Rosasco
49
0
0
20 May 2025
InfoNCE is a Free Lunch for Semantically guided Graph Contrastive Learning
InfoNCE is a Free Lunch for Semantically guided Graph Contrastive Learning
Zixu Wang
Bingbing Xu
Yige Yuan
Huawei Shen
Xueqi Cheng
81
0
0
07 May 2025
Domain Adaptation Framework for Turning Movement Count Estimation with Limited Data
Domain Adaptation Framework for Turning Movement Count Estimation with Limited Data
Xiaobo Ma
Hyunsoo Noh
Ryan Hatch
James Tokishi
Zepu Wang
109
0
0
25 Mar 2025
Domain Adaptation-Enhanced Searchlight: Enabling classification of brain states from visual perception to mental imagery
Domain Adaptation-Enhanced Searchlight: Enabling classification of brain states from visual perception to mental imagery
Alexander Olza
David Soto
Roberto Santana
75
0
0
28 Jan 2025
Mitigating covariate shift in non-colocated data with learned parameter
  priors
Mitigating covariate shift in non-colocated data with learned parameter priors
Behraj Khan
Behroz Mirza
Nouman Durrani
T. Syed
42
0
0
10 Nov 2024
Causal Discovery-Driven Change Point Detection in Time Series
Causal Discovery-Driven Change Point Detection in Time Series
Shanyun Gao
Raghavendra Addanki
Tong Yu
Ryan Rossi
Murat Kocaoglu
AI4TS
65
1
0
10 Jul 2024
Density Ratio Estimation via Sampling along Generalized Geodesics on
  Statistical Manifolds
Density Ratio Estimation via Sampling along Generalized Geodesics on Statistical Manifolds
Masanari Kimura
H. Bondell
87
5
0
27 Jun 2024
Meta-learning for Positive-unlabeled Classification
Meta-learning for Positive-unlabeled Classification
Atsutoshi Kumagai
Tomoharu Iwata
Yasuhiro Fujiwara
80
1
0
06 Jun 2024
Fairness Hub Technical Briefs: Definition and Detection of Distribution
  Shift
Fairness Hub Technical Briefs: Definition and Detection of Distribution Shift
Nicolas Acevedo
Carmen Cortez
Christopher A. Brooks
René F. Kizilcec
Renzhe Yu
48
0
0
23 May 2024
Conformal Counterfactual Inference under Hidden Confounding
Conformal Counterfactual Inference under Hidden Confounding
Zonghao Chen
Ruocheng Guo
Jean-François Ton
Yang Liu
CMLOffRL
214
3
0
20 May 2024
Time Series Representation Learning with Supervised Contrastive Temporal
  Transformer
Time Series Representation Learning with Supervised Contrastive Temporal Transformer
Yuansan Liu
S. Wijewickrema
C. Bester
Stephen O'Leary
James Bailey
AI4TS
82
1
0
16 Mar 2024
A Short Survey on Importance Weighting for Machine Learning
A Short Survey on Importance Weighting for Machine Learning
Masanari Kimura
H. Hino
103
8
0
15 Mar 2024
Collaborative non-parametric two-sample testing
Collaborative non-parametric two-sample testing
Alejandro de la Concha
Nicolas Vayatis
Argyris Kalogeratos
92
0
0
08 Feb 2024
Targeted Machine Learning for Average Causal Effect Estimation Using the
  Front-Door Functional
Targeted Machine Learning for Average Causal Effect Estimation Using the Front-Door Functional
Anna Guo
David Benkeser
Razieh Nabi
CML
61
3
0
15 Dec 2023
Nearest Neighbor Sampling for Covariate Shift Adaptation
Nearest Neighbor Sampling for Covariate Shift Adaptation
Franccois Portier
Lionel Truquet
Ikko Yamane
OffRL
39
1
0
15 Dec 2023
Online non-parametric likelihood-ratio estimation by Pearson-divergence
  functional minimization
Online non-parametric likelihood-ratio estimation by Pearson-divergence functional minimization
Alejandro de la Concha
Nicolas Vayatis
Argyris Kalogeratos
59
1
0
03 Nov 2023
SemST: Semantically Consistent Multi-Scale Image Translation via
  Structure-Texture Alignment
SemST: Semantically Consistent Multi-Scale Image Translation via Structure-Texture Alignment
Ganning Zhao
Wenhui Cui
Suya You
C.-C. Jay Kuo
66
2
0
08 Oct 2023
Some notes concerning a generalized KMM-type optimization method for
  density ratio estimation
Some notes concerning a generalized KMM-type optimization method for density ratio estimation
C. Alecsa
18
0
0
14 Sep 2023
Population Expansion for Training Language Models with Private Federated
  Learning
Population Expansion for Training Language Models with Private Federated Learning
Tatsuki Koga
Congzheng Song
Martin Pelikan
Mona Chitnis
FedML
50
1
0
14 Jul 2023
"Filling the Blanks'': Identifying Micro-activities that Compose Complex
  Human Activities of Daily Living
"Filling the Blanks'': Identifying Micro-activities that Compose Complex Human Activities of Daily Living
S. Chatterjee
Bivas Mitra
Sandip Chakraborty
HAI
26
0
0
22 Jun 2023
Federated Learning under Covariate Shifts with Generalization Guarantees
Federated Learning under Covariate Shifts with Generalization Guarantees
Ali Ramezani-Kebrya
Fanghui Liu
Thomas Pethick
Grigorios G. Chrysos
Volkan Cevher
FedMLOOD
99
8
0
08 Jun 2023
Generalizing Importance Weighting to A Universal Solver for Distribution
  Shift Problems
Generalizing Importance Weighting to A Universal Solver for Distribution Shift Problems
Tongtong Fang
Nan Lu
Gang Niu
Masashi Sugiyama
OOD
100
6
0
24 May 2023
Density Ratio Estimation-based Bayesian Optimization with Semi-Supervised Learning
Density Ratio Estimation-based Bayesian Optimization with Semi-Supervised Learning
Jungtaek Kim
82
1
0
24 May 2023
Double-Weighting for Covariate Shift Adaptation
Double-Weighting for Covariate Shift Adaptation
José I. Segovia-Martín
Santiago Mazuelas
Anqi Liu
74
7
0
15 May 2023
Unsupervised Synthetic Image Refinement via Contrastive Learning and
  Consistent Semantic-Structural Constraints
Unsupervised Synthetic Image Refinement via Contrastive Learning and Consistent Semantic-Structural Constraints
Ganning Zhao
Ting-Li Shen
Suya You
C.-C. Jay Kuo
68
5
0
25 Apr 2023
Information Geometrically Generalized Covariate Shift Adaptation
Information Geometrically Generalized Covariate Shift Adaptation
Masanari Kimura
H. Hino
OOD
61
7
0
19 Apr 2023
Federated Covariate Shift Adaptation for Missing Target Output Values
Federated Covariate Shift Adaptation for Missing Target Output Values
Yaqian Xu
Wenquan Cui
Jianjun Xu
Haoyang Cheng
FedML
40
1
0
28 Feb 2023
Adapting to Continuous Covariate Shift via Online Density Ratio
  Estimation
Adapting to Continuous Covariate Shift via Online Density Ratio Estimation
Yu Zhang
Zhenyu Zhang
Peng Zhao
Masashi Sugiyama
OOD
85
13
0
06 Feb 2023
Online Centralized Non-parametric Change-point Detection via Graph-based
  Likelihood-ratio Estimation
Online Centralized Non-parametric Change-point Detection via Graph-based Likelihood-ratio Estimation
Alejandro de la Concha
Argyris Kalogeratos
Nicolas Vayatis
41
0
0
08 Jan 2023
Estimating and Explaining Model Performance When Both Covariates and
  Labels Shift
Estimating and Explaining Model Performance When Both Covariates and Labels Shift
Lingjiao Chen
Matei A. Zaharia
James Zou
64
18
0
18 Sep 2022
Fast and Accurate Importance Weighting for Correcting Sample Bias
Fast and Accurate Importance Weighting for Correcting Sample Bias
Antoine de Mathelin
Francois Deheeger
Mathilde Mougeot
Nicolas Vayatis
90
7
0
09 Sep 2022
Latent Neural Stochastic Differential Equations for Change Point
  Detection
Latent Neural Stochastic Differential Equations for Change Point Detection
Artem Sergeevich Ryzhikov
M. Hushchyn
D. Derkach
66
2
0
22 Aug 2022
Approximate Data Deletion in Generative Models
Approximate Data Deletion in Generative Models
Zhifeng Kong
Scott Alfeld
MU
57
4
0
29 Jun 2022
A Contrastive Approach to Online Change Point Detection
A Contrastive Approach to Online Change Point Detection
Artur Goldman
Nikita Puchkin
Valeriia Shcherbakova
Uliana Vinogradova
84
7
0
21 Jun 2022
Collaborative likelihood-ratio estimation over graphs
Collaborative likelihood-ratio estimation over graphs
Alejandro de la Concha
Nicolas Vayatis
Argyris Kalogeratos
71
1
0
28 May 2022
MBORE: Multi-objective Bayesian Optimisation by Density-Ratio Estimation
MBORE: Multi-objective Bayesian Optimisation by Density-Ratio Estimation
George De Ath
Tinkle Chugh
Alma A. M. Rahat
75
4
0
31 Mar 2022
Proximal Policy Optimization with Adaptive Threshold for Symmetric
  Relative Density Ratio
Proximal Policy Optimization with Adaptive Threshold for Symmetric Relative Density Ratio
Taisuke Kobayashi
62
5
0
18 Mar 2022
Importance Weighting Approach in Kernel Bayes' Rule
Importance Weighting Approach in Kernel Bayes' Rule
Liyuan Xu
Yutian Chen
Arnaud Doucet
Arthur Gretton
131
1
0
05 Feb 2022
Unified Perspective on Probability Divergence via Maximum Likelihood
  Density Ratio Estimation: Bridging KL-Divergence and Integral Probability
  Metrics
Unified Perspective on Probability Divergence via Maximum Likelihood Density Ratio Estimation: Bridging KL-Divergence and Integral Probability Metrics
Masahiro Kato
Masaaki Imaizumi
Kentaro Minami
71
0
0
31 Jan 2022
Unsupervised Change Detection using DRE-CUSUM
Unsupervised Change Detection using DRE-CUSUM
Sudarshan Adiga
Ravi Tandon
AI4TS
70
3
0
27 Jan 2022
Rethinking Importance Weighting for Transfer Learning
Rethinking Importance Weighting for Transfer Learning
Nan Lu
Tianyi Zhang
Tongtong Fang
Takeshi Teshima
Masashi Sugiyama
51
11
0
19 Dec 2021
A Kernel Test for Causal Association via Noise Contrastive Backdoor
  Adjustment
A Kernel Test for Causal Association via Noise Contrastive Backdoor Adjustment
Robert Hu
Dino Sejdinovic
R. Evans
CML
64
2
0
25 Nov 2021
Density Ratio Estimation via Infinitesimal Classification
Density Ratio Estimation via Infinitesimal Classification
Kristy Choi
Chenlin Meng
Yang Song
Stefano Ermon
80
42
0
22 Nov 2021
SHIFT15M: Fashion-specific dataset for set-to-set matching with several
  distribution shifts
SHIFT15M: Fashion-specific dataset for set-to-set matching with several distribution shifts
Masanari Kimura
Takuma Nakamura
Yuki Saito
OOD
96
3
0
30 Aug 2021
Approximate Bayesian Optimisation for Neural Networks
Approximate Bayesian Optimisation for Neural Networks
N. Hassen
Irina Rish
13
1
0
27 Aug 2021
ADAPT : Awesome Domain Adaptation Python Toolbox
ADAPT : Awesome Domain Adaptation Python Toolbox
Antoine de Mathelin
Mounir Atiq
Guillaume Richard
Alejandro de la Concha
Mouad Yachouti
Franccois Deheeger
Mathilde Mougeot
Nicolas Vayatis
TTA
61
48
0
07 Jul 2021
Featurized Density Ratio Estimation
Featurized Density Ratio Estimation
Kristy Choi
Madeline Liao
Stefano Ermon
TPM
72
24
0
05 Jul 2021
Meta-Learning for Relative Density-Ratio Estimation
Meta-Learning for Relative Density-Ratio Estimation
Atsutoshi Kumagai
Tomoharu Iwata
Yasuhiro Fujiwara
144
10
0
02 Jul 2021
Robust Generalization despite Distribution Shift via Minimum
  Discriminating Information
Robust Generalization despite Distribution Shift via Minimum Discriminating Information
Tobias Sutter
Andreas Krause
Daniel Kuhn
OOD
54
10
0
08 Jun 2021
12
Next