Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1107.1270
Cited By
v1
v2
v3 (latest)
High-Dimensional Gaussian Graphical Model Selection: Walk Summability and Local Separation Criterion
6 July 2011
Anima Anandkumar
Vincent Y. F. Tan
A. Willsky
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"High-Dimensional Gaussian Graphical Model Selection: Walk Summability and Local Separation Criterion"
42 / 42 papers shown
Title
Lasso with Latents: Efficient Estimation, Covariate Rescaling, and Computational-Statistical Gaps
Jonathan A. Kelner
Frederic Koehler
Raghu Meka
Dhruv Rohatgi
52
2
0
23 Feb 2024
Recovering the Graph Underlying Networked Dynamical Systems under Partial Observability: A Deep Learning Approach
Sérgio Machado
Anirudh Sridhar
P. Gil
J. Henriques
J. M. F. Moura
A. Santos
CML
42
2
0
08 Aug 2022
Learning Continuous Exponential Families Beyond Gaussian
C. Ren
Sidhant Misra
Marc Vuffray
A. Lokhov
70
5
0
18 Feb 2021
Algorithms for Learning Graphs in Financial Markets
José Vinícius de Miranda Cardoso
Jiaxi Ying
Daniel P. Palomar
CML
AIFin
117
17
0
31 Dec 2020
Learning Undirected Graphs in Financial Markets
J. Cardoso
Daniel P. Palomar
AIFin
60
26
0
20 May 2020
Learning Gaussian Graphical Models via Multiplicative Weights
Anamay Chaturvedi
Jonathan Scarlett
49
3
0
20 Feb 2020
Graph Learning Under Partial Observability
Vincenzo Matta
A. Santos
Ali H. Sayed
107
0
0
18 Dec 2019
Structured Graph Learning Via Laplacian Spectral Constraints
Sandeep Kumar
Jiaxi Ying
J. Cardoso
Daniel P. Palomar
115
58
0
24 Sep 2019
Topology Inference over Networks with Nonlinear Coupling
A. Santos
Vincenzo Matta
Ali H. Sayed
115
0
0
21 Jun 2019
Learning Some Popular Gaussian Graphical Models without Condition Number Bounds
Jonathan A. Kelner
Frederic Koehler
Raghu Meka
Ankur Moitra
134
32
0
03 May 2019
Total positivity in exponential families with application to binary variables
Steffen Lauritzen
Caroline Uhler
Piotr Zwiernik
158
13
0
01 May 2019
A Unified Framework for Structured Graph Learning via Spectral Constraints
Sandeep Kumar
Jiaxi Ying
José Vinícius de Miranda Cardoso
Daniel P. Palomar
86
115
0
22 Apr 2019
Graph Learning over Partially Observed Diffusion Networks: Role of Degree Concentration
Vincenzo Matta
A. Santos
Ali H. Sayed
135
2
0
05 Apr 2019
Structure Learning of Sparse GGMs over Multiple Access Networks
Mostafa Tavassolipour
Armin Karamzade
Reza Mirzaeifard
S. Motahari
M. M. Manzuri Shalmani
138
2
0
26 Dec 2018
Testing Changes in Communities for the Stochastic Block Model
Aditya Gangrade
Praveen Venkatesh
B. Nazer
Venkatesh Saligrama
59
3
0
29 Nov 2018
Identifiability in Gaussian Graphical Models
D. Soh
S. Tatikonda
76
3
0
10 Jun 2018
Stationary Geometric Graphical Model Selection
I. Soloveychik
Vahid Tarokh
134
0
0
10 Jun 2018
Local Tomography of Large Networks under the Low-Observability Regime
A. Santos
Vincenzo Matta
Ali H. Sayed
48
27
0
23 May 2018
Region Detection in Markov Random Fields: Gaussian Case
I. Soloveychik
Vahid Tarokh
133
2
0
12 Feb 2018
Lower Bounds for Two-Sample Structural Change Detection in Ising and Gaussian Models
Aditya Gangrade
B. Nazer
Venkatesh Saligrama
66
6
0
28 Oct 2017
Learning Graphs with Monotone Topology Properties and Multiple Connected Components
Eduardo Pavez
Hilmi E. Egilmez
Antonio Ortega
87
55
0
31 May 2017
Information Theoretic Optimal Learning of Gaussian Graphical Models
Sidhant Misra
Marc Vuffray
A. Lokhov
41
5
0
15 Mar 2017
An Efficient Pseudo-likelihood Method for Sparse Binary Pairwise Markov Network Estimation
Sinong Geng
Zhaobin Kuang
David Page
141
11
0
27 Feb 2017
Maximum likelihood estimation in Gaussian models under total positivity
Steffen Lauritzen
Caroline Uhler
Piotr Zwiernik
138
70
0
14 Feb 2017
Mixing Times and Structural Inference for Bernoulli Autoregressive Processes
Dimitrios Katselis
Carolyn L. Beck
R. Srikant
46
15
0
19 Dec 2016
Lower Bounds on Active Learning for Graphical Model Selection
Jonathan Scarlett
Volkan Cevher
58
8
0
08 Jul 2016
On the Difficulty of Selecting Ising Models with Approximate Recovery
Jonathan Scarlett
Volkan Cevher
78
12
0
11 Feb 2016
Active Learning Algorithms for Graphical Model Selection
Gautam Dasarathy
Aarti Singh
Maria-Florina Balcan
Jonghyuk Park
163
25
0
01 Feb 2016
Information-theoretic limits of Bayesian network structure learning
Asish Ghoshal
Jean Honorio
162
25
0
27 Jan 2016
New Optimisation Methods for Machine Learning
Aaron Defazio
77
6
0
09 Oct 2015
Efficient Neighborhood Selection for Gaussian Graphical Models
Yingxiang Yang
Jalal Etesami
Negar Kiyavash
TPM
36
1
0
22 Sep 2015
High-dimensional consistency in score-based and hybrid structure learning
Preetam Nandy
Alain Hauser
Marloes H. Maathuis
106
130
0
09 Jul 2015
On model misspecification and KL separation for Gaussian graphical models
Varun Jog
Po-Ling Loh
82
15
0
10 Jan 2015
Estimation of positive definite M-matrices and structure learning for attractive Gaussian Markov Random fields
M. Slawski
Matthias Hein
162
104
0
26 Apr 2014
Active Learning for Undirected Graphical Model Selection
Divyanshu Vats
Robert D. Nowak
Richard G. Baraniuk
151
8
0
13 Apr 2014
Statistical Structure Learning, Towards a Robust Smart Grid
Hanie Sedghi
E. Jonckheere
426
4
0
07 Mar 2014
Multi-Step Stochastic ADMM in High Dimensions: Applications to Sparse Optimization and Noisy Matrix Decomposition
Hanie Sedghi
Anima Anandkumar
E. Jonckheere
113
13
0
20 Feb 2014
Concave Penalized Estimation of Sparse Gaussian Bayesian Networks
Bryon Aragam
Qing Zhou
CML
132
107
0
04 Jan 2014
A Junction Tree Framework for Undirected Graphical Model Selection
Divyanshu Vats
Robert D. Nowak
CML
126
8
0
17 Apr 2013
Pairwise MRF Calibration by Perturbation of the Bethe Reference Point
Cyril Furtlehner
Yufei Han
Jean-Marc Lasgouttes
Victorin Martin
178
5
0
19 Oct 2012
Learning loopy graphical models with latent variables: Efficient methods and guarantees
Anima Anandkumar
R. Valluvan
193
50
0
17 Mar 2012
High-dimensional structure estimation in Ising models: Local separation criterion
Anima Anandkumar
Vincent Y. F. Tan
Furong Huang
A. Willsky
221
114
0
08 Jul 2011
1