Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1201.0175
Cited By
v1
v2 (latest)
Large Covariance Estimation by Thresholding Principal Orthogonal Complements
30 December 2011
Jianqing Fan
Yuan Liao
Martina Mincheva
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Large Covariance Estimation by Thresholding Principal Orthogonal Complements"
50 / 142 papers shown
Title
Factor analysis in high dimensional biological data with dependent observations
Chris McKennan
CML
29
6
0
23 Sep 2020
Recent Developments on Factor Models and its Applications in Econometric Learning
Jianqing Fan
Kunpeng Li
Yuan Liao
80
16
0
21 Sep 2020
Prediction in latent factor regression: Adaptive PCR and beyond
Xin Bing
F. Bunea
Seth Strimas-Mackey
M. Wegkamp
36
2
0
20 Jul 2020
Tensor Factor Model Estimation by Iterative Projection
Yuefeng Han
Rong Chen
Dan Yang
Cun-Hui Zhang
AI4TS
81
29
0
04 Jun 2020
Beyond Data Samples: Aligning Differential Networks Estimation with Scientific Knowledge
Arshdeep Sekhon
Zhe Wang
Yanjun Qi
35
0
0
24 Apr 2020
Doubly Debiased Lasso: High-Dimensional Inference under Hidden Confounding
Zijian Guo
Domagoj Cevid
Peter Buhlmann
CML
57
39
0
08 Apr 2020
Company classification using machine learning
S. Husmann
A. Shivarova
R. Steinert
33
11
0
31 Mar 2020
Adaptive Estimation in Multivariate Response Regression with Hidden Variables
Xin Bing
Y. Ning
Yaosheng Xu
55
4
0
30 Mar 2020
On Consistency and Sparsity for High-Dimensional Functional Time Series with Application to Autoregressions
Shaojun Guo
Xinghao Qiao
AI4TS
42
11
0
23 Mar 2020
False Discovery Rate Control Under General Dependence By Symmetrized Data Aggregation
Lilun Du
Xu Guo
Wenguang Sun
Changliang Zou
40
44
0
27 Feb 2020
Hypothesis testing for eigenspaces of covariance matrix
I. Silin
Jianqing Fan
29
7
0
23 Feb 2020
Interpolating Predictors in High-Dimensional Factor Regression
F. Bunea
Seth Strimas-Mackey
M. Wegkamp
65
12
0
06 Feb 2020
Bridging Convex and Nonconvex Optimization in Robust PCA: Noise, Outliers, and Missing Data
Yuxin Chen
Jianqing Fan
Cong Ma
Yuling Yan
86
52
0
15 Jan 2020
Statistical Inference for High-Dimensional Matrix-Variate Factor Model
Elynn Y. Chen
Jianqing Fan
109
66
0
07 Jan 2020
CDPA: Common and Distinctive Pattern Analysis between High-dimensional Datasets
Hai Shu
Zhe Qu
18
1
0
20 Dec 2019
Integrative Factor Regression and Its Inference for Multimodal Data Analysis
Quefeng Li
Lexin Li
80
27
0
11 Nov 2019
Ridge-type Linear Shrinkage Estimation of the Matrix Mean of High-dimensional Normal Distribution
Ryota Yuasa
T. Kubokawa
25
0
0
26 Oct 2019
SIMPLE: Statistical Inference on Membership Profiles in Large Networks
Jianqing Fan
Yingying Fan
Xiao Han
Jinchi Lv
67
43
0
03 Oct 2019
Optimal estimation of functionals of high-dimensional mean and covariance matrix
Jianqing Fan
Haolei Weng
Yifeng Zhou
54
7
0
20 Aug 2019
Model-free Feature Screening and FDR Control with Knockoff Features
Wanjun Liu
Y. Ke
Jingyuan Liu
Runze Li
49
59
0
19 Aug 2019
Extending the Davis-Kahan theorem for comparing eigenvectors of two symmetric matrices II: Computation and Applications
J. Lutzeyer
S. M. I. A. T. Walden
25
0
0
09 Aug 2019
Extending the Davis-Kahan theorem for comparing eigenvectors of two symmetric matrices I: Theory
J. Lutzeyer
S. M. I. A. T. Walden
22
1
0
09 Aug 2019
Learning Latent Factors from Diversified Projections and its Applications to Over-Estimated and Weak Factors
Jianqing Fan
Yuan Liao
38
24
0
04 Aug 2019
High-dimensional principal component analysis with heterogeneous missingness
Ziwei Zhu
Tengyao Wang
R. Samworth
183
50
0
28 Jun 2019
Estimation of the Kronecker Covariance Model by Quadratic Form
O. Linton
Haihan Tang
23
2
0
21 Jun 2019
Sparse Approximate Factor Estimation for High-Dimensional Covariance Matrices
M. Daniele
W. Pohlmeier
A. Zagidullina
75
8
0
13 Jun 2019
Diagonally-Dominant Principal Component Analysis
Z. Ke
Lingzhou Xue
Fan Yang
84
4
0
31 May 2019
Factor Models for High-Dimensional Functional Time Series
Shahin Tavakoli
Gilles Nisol
Marc Hallin
AI4TS
37
2
0
24 May 2019
Generalized Four Moment Theorem with an application to the CLT for the spiked eigenvalues of high-dimensional general Fisher-matrices
Dandan Jiang
Zhiqiang Hou
Z. Bai
48
1
0
11 Apr 2019
Bayesian Factor-adjusted Sparse Regression
Jianqing Fan
Bai Jiang
Qiang Sun
82
5
0
23 Mar 2019
Noisy Matrix Completion: Understanding Statistical Guarantees for Convex Relaxation via Nonconvex Optimization
Yuxin Chen
Yuejie Chi
Jianqing Fan
Cong Ma
Yuling Yan
89
128
0
20 Feb 2019
Inference for Heterogeneous Effects using Low-Rank Estimation of Factor Slopes
Victor Chernozhukov
Christian B. Hansen
Yuan Liao
Yinchu Zhu
76
24
0
19 Dec 2018
User-Friendly Covariance Estimation for Heavy-Tailed Distributions
Y. Ke
Stanislav Minsker
Zhao Ren
Qiang Sun
Wen-Xin Zhou
91
57
0
05 Nov 2018
RSVP-graphs: Fast High-dimensional Covariance Matrix Estimation under Latent Confounding
Rajen Dinesh Shah
Benjamin Frot
Gian-Andrea Thanei
N. Meinshausen
54
6
0
02 Nov 2018
Optimal Covariance Estimation for Condition Number Loss in the Spiked Model
D. Donoho
Behrooz Ghorbani
133
7
0
17 Oct 2018
Bayesian Estimation of Sparse Spiked Covariance Matrices in High Dimensions
Fangzheng Xie
Yanxun Xu
Carey E. Priebe
Joshua Cape
44
8
0
22 Aug 2018
Generalized Four Moment Theorem and an Application to CLT for Spiked Eigenvalues of Large-dimensional Covariance Matrices
Dandan Jiang
Z. Bai
26
30
0
16 Aug 2018
Robust high dimensional factor models with applications to statistical machine learning
Jianqing Fan
Kaizheng Wang
Yiqiao Zhong
Ziwei Zhu
86
55
0
12 Aug 2018
Optimal Subspace Estimation Using Overidentifying Vectors via Generalized Method of Moments
Jianqing Fan
Yiqiao Zhong
21
10
0
08 May 2018
Matrices with Gaussian noise: optimal estimates for singular subspace perturbation
Sean O’Rourke
Van Vu
Ke Wang
72
7
0
02 Mar 2018
Testability of high-dimensional linear models with non-sparse structures
Jelena Bradic
Jianqing Fan
Yinchu Zhu
53
16
0
26 Feb 2018
Hoeffding's lemma for Markov Chains and its applications to statistical learning
Jianqing Fan
Bai Jiang
Qiang Sun
61
28
0
01 Feb 2018
On Variable Ordination of Modified Cholesky Decomposition for Sparse Covariance Matrix Estimation
Xiaoning Kang
Xinwei Deng
27
0
0
01 Jan 2018
The Dispersion Bias
L. Goldberg
A. Papanicolaou
Alexander D. Shkolnik
58
16
0
15 Nov 2017
Limiting Laws for Divergent Spiked Eigenvalues and Largest Non-spiked Eigenvalue of Sample Covariance Matrices
Tony Cai
Xiao Han
G. Pan
66
80
0
01 Nov 2017
Sparse covariance matrix estimation in high-dimensional deconvolution
Denis Belomestny
Mathias Trabs
Alexandre B. Tsybakov
65
10
0
30 Oct 2017
Nonsparse learning with latent variables
Zemin Zheng
Jinchi Lv
Wei Lin
CML
34
1
0
07 Oct 2017
Adjusting systematic bias in high dimensional principal component scores
Sungkyu Jung
25
5
0
16 Aug 2017
The two-to-infinity norm and singular subspace geometry with applications to high-dimensional statistics
Joshua Cape
M. Tang
Carey E. Priebe
81
136
0
30 May 2017
On spectral properties of high-dimensional spatial-sign covariance matrices in elliptical distributions with applications
Weiming Li
Wang Zhou
11
1
0
18 May 2017
Previous
1
2
3
Next