ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1201.5283
  4. Cited By
An Efficient Primal-Dual Prox Method for Non-Smooth Optimization
v1v2v3v4v5 (latest)

An Efficient Primal-Dual Prox Method for Non-Smooth Optimization

24 January 2012
Tianbao Yang
M. Mahdavi
Rong Jin
Shenghuo Zhu
ArXiv (abs)PDFHTML

Papers citing "An Efficient Primal-Dual Prox Method for Non-Smooth Optimization"

5 / 5 papers shown
Title
Fast and Simple Optimization for Poisson Likelihood Models
Fast and Simple Optimization for Poisson Likelihood Models
Niao He
Zaïd Harchaoui
Yichen Wang
Le Song
102
14
0
03 Aug 2016
Homotopy Smoothing for Non-Smooth Problems with Lower Complexity than
  $O(1/ε)$
Homotopy Smoothing for Non-Smooth Problems with Lower Complexity than O(1/ε)O(1/ε)O(1/ε)
Yi Tian Xu
Yan Yan
Qihang Lin
Tianbao Yang
121
25
0
13 Jul 2016
Accelerate Stochastic Subgradient Method by Leveraging Local Growth
  Condition
Accelerate Stochastic Subgradient Method by Leveraging Local Growth Condition
Yi Tian Xu
Qihang Lin
Tianbao Yang
149
11
0
04 Jul 2016
RSG: Beating Subgradient Method without Smoothness and Strong Convexity
RSG: Beating Subgradient Method without Smoothness and Strong Convexity
Tianbao Yang
Qihang Lin
172
85
0
09 Dec 2015
A Comparison of First-order Algorithms for Machine Learning
A Comparison of First-order Algorithms for Machine Learning
Wei Yu
Thomas Pock
20
0
0
26 Apr 2014
1