ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1202.3731
  4. Cited By
What Cannot be Learned with Bethe Approximations

What Cannot be Learned with Bethe Approximations

Conference on Uncertainty in Artificial Intelligence (UAI), 2011
14 February 2012
Uri Heinemann
Amir Globerson
ArXiv (abs)PDFHTML

Papers citing "What Cannot be Learned with Bethe Approximations"

5 / 5 papers shown
Title
Perturb-and-max-product: Sampling and learning in discrete energy-based
  models
Perturb-and-max-product: Sampling and learning in discrete energy-based modelsNeural Information Processing Systems (NeurIPS), 2021
Miguel Lazaro-Gredilla
Antoine Dedieu
Dileep George
188
10
0
03 Nov 2021
Bethe Learning of Conditional Random Fields via MAP Decoding
Bethe Learning of Conditional Random Fields via MAP Decoding
K. Tang
Nicholas Ruozzi
David Belanger
Tony Jebara
TPM
173
5
0
04 Mar 2015
Approximating the Bethe partition function
Approximating the Bethe partition functionConference on Uncertainty in Artificial Intelligence (UAI), 2013
Adrian Weller
Tony Jebara
124
29
0
30 Dec 2013
Marginal Likelihoods for Distributed Parameter Estimation of Gaussian
  Graphical Models
Marginal Likelihoods for Distributed Parameter Estimation of Gaussian Graphical ModelsIEEE Transactions on Signal Processing (IEEE Trans. Signal Process.), 2013
Zhaoshi Meng
Dennis L. Wei
A. Wiesel
Alfred Hero
173
25
0
19 Mar 2013
Bethe Bounds and Approximating the Global Optimum
Bethe Bounds and Approximating the Global OptimumInternational Conference on Artificial Intelligence and Statistics (AISTATS), 2012
Adrian Weller
Tony Jebara
127
15
0
31 Dec 2012
1